Цунамі — Вікіпедія
Схема підводного землетрусу та викликаного ним цунамі Цунамі 26 грудня 2004 року в Індійському океаніЦуна́мі (яп. 津波 — велика хвиля, що заливає бухту) — хвилі, довжиною більше 500 м, які утворюються в морі чи в океані зазвичай внаслідок землетрусів чи вивержень вулканів на дні Світового океану (або падіння астероїду тощо) й охоплюють усю товщу води[1]. На глибокій воді цунамі поширюється зі швидкістю кількасот кілометрів на годину й зазнає незначних втрат енергії.
Головна відмінність цунамі від інших видів хвиль на воді полягає в тому, що рухається вся товща води, а не лише приповерховий шар. У морі, на великій глибині цунамі не становлять загрози для судноплавства, їх можна навіть не помітити. Однак біля берега, коли глибина поступово зменшується, цунамі уповільнюється, а висота хвилі зростає, вона перетворюється на рухому стіну води. Під час виходу на мілину біля берега її висота може сягнути десятків метрів. Крім того, хвиля, що йде під кутом до берега, уповільнюється нерівномірно і має тенденцію розвертатися до берега.
Цунамі спостерігаються у багатьох місцях земної кулі, але найчастіше у західній частині Тихого океану. Багато з них супроводжувалися руйнуванням прибережних населених пунктів і людськими жертвами. Залежно від відстані від епіцентру землетрусу цунамі приходять до узбережжя за десятки хвилин, а то й годин.
- Причиною більшості цунамі є підводний землетрус, під час якого відбувається зсув (підйом чи опускання) ділянки морського дна. Зазвичай виникає від трьох до п’яти хвиль, друга або третя найсильніші. Саме таке цунамі виникло під час землетрусу в Індонезії 2004 і саме воно спричинило більшу частину його жертв і руйнувань.
- Крім того, причиною цунамі може бути зсув (обвал) великої кількості ґрунту, гірських порід безпосередньо в океан. Найвідомішим прикладом такого цунамі є гігантська хвиля у затоці Літуя[en] (Аляска, США), що виникла 9 липня 1958 року. Внаслідок землетрусу льодовик Літуя обвалився у затоку з висоти 900 метрів і викликав на протилежному кінці вузької затоки хвилю заввишки 500 (п’ятсот!) метрів. Не менш небезпечними є підводні зсуви у дельтах річок з високими накопиченнями відкладень.
- Вулканічні виверження створюють близько 5 % всіх цунамі. Великі підводні виверження створюють такий же еффект, як і землетруси. А під час потужних вулканічних вибухів довгі хвилі утворюються, коли вода заповнює кальдери (порожнини, що залишилися від вивергнутого матеріалу). Класичний приклад — цунамі, що виникло під час виверження вулкана Кракатау 1883 року. В околицях Яви й Суматри висота хвиль сягала 35-40 метрів, цунамі спостерігалося на Цейлоні, біля Південого берега Африки і на мисі Горн (Південна Америка). Причому поблизу останнього майже одночасно спостерігалося дві хвилі: одна огинала земну кулю зі сходу на захід, а інша — у протилежному напрямку.
- Різкі зміни повітряного тиску або швидкі пересування аномалій атмосферного тиску можуть виклика́ти метеоцунамі[en]. Такі типи хвиль є загальними для всього світу, але відомі здебільшого під своїми локальними (місцевими) назвами: Абікі (Японія), кат. Piccara (Балеарські острови) тощо.
- Цунамі можуть виникнути також від потужних підводних або надводних вибухів, але вони здебільшого мають локальний характер. Щоб викликати справжнє океанське цунамі потужності наявної ядерної або термоядерної зброї не достатньо. Хоча одночасний вибух кількох потужних водневих бомб, розташованих уздовж деякої лінії на дні океану теоретично може викликати цунамі. Проте випробування ядерної зброї заборонено міжнародними договорами.
- Падіння досить значного метеориту (астероїду або комети) також може призвести до цунамі. А оскільки кінетична енергія такого тіла (через його швидкість) може перевищувати енергію, що вивільняється під час найпотужніших землетрусів, то падіння на поверхню океану може призвести до велетенського цунамі, що біля берегів матиме висоту понад 100 м.
Хвилі цунамі мають надзвичайно довгий період (від двох хвилин до години) та, відповідно, велику довжину (десятки або сотні кілометрів) у той час як звичайні створені вітром хвилі, мають період до 10 секунд та довжину хвилі до 150 м. Оскільки довжина хвилі цунамі набагато більша за глибину водоймища, то до розповсюдження таких хвиль можна застосувати так зване наближення мілини: хвиля на мілині рухається із швидкістю, що дорівнює квадратному кореневі від добутку прискорення вільного падіння на глибину водоймища
Наприклад, на глибині 4000 м, швидкість становитиме близько 200 м/с (720 км/год), а на глибині 40 м — лише 20 м/с (72 км/год). Найбільша швидкість руху цунамі, яку вдалося виміряти, становила 1000 км/год. На ілюстрації цунамі 2004 року показано, як профіль дна Індійського океану впливає на розповсюдження хвиль.
Енергія хвилі цунамі є постійною величиною, що залежить від її висоти та швидкості.
Хвиля цунамі висотою кілька метрів має набагато сильнішу руйнівну дію, ніж штормові хвилі тієї ж висоти. Причин, що викликають такі наслідки, декілька:
- Під час шторму відбувається рух лише приповерхового шару води; під час цунамі рухається вся товща. Отже, під час цунамі на берег вихлюпується набагато більше води.
- Швидкість цунамі набагато більша швидкості вітрових хвиль, навіть біля берега. Отже, кінетична енергія набагато більша.
- Під час шторму хвилі збільшуються поступово, що надає можливість відійти у безпечне місце. До того ж штормові попередження надають можливість вжити заходів безпеки, евакуюватися. Цунамі ж приходить раптово: системи попередження цунамі є не всюди, і працюють вони не завжди.
- Цунамі зазвичай приходить кількома хвилями. Перша хвиля не найбільша, але вона змочує поверхню суходолу й зменшує опір для наступних. Крім того, після першої хвилі люди іноді повертаються до берега — допомогти постраждалим, оцінити збитки , не здогадуючись про наступні хвилі, інтервал між якими може становити від кількох хвилин до години.
Шкала інтенсивності цунамі[ред. | ред. код]
- 1 бал — дуже слабке. Хвиля реєструється лише приладами, що вимірюють зміну висоти рівня моря.
- 2 — слабке. Може затопити пласке узбережжя. Її помічають тільки досвідчені рибалки та моряки.
- 3 — середньої сили. Помічається всіма спостерігачами. Пласкі узбережжя затоплено, легкі судна може бути викинуто на берег. У гирлах річок течія може змінитись на зворотну. Портові споруди зазнають невеликих руйнувань.
- 4 — сильне. Узбережжя затоплено, прибережні споруди пошкоджено. Великі вітрильники і невеликі моторні судна викинуто на суходіл, а згодом знову змито в море. Береги засмічено уламками й сміттям.
- 5 — дуже сильне. Приморські території затоплено. Пошкоджено моли. Великі судна викинуто на берег. Значні збитки у внутрішній частині узбережжя. Усе навкруги вкрито уламками. У гирлах річок високі штормові нагони. Людські жертви.
- 6 — катастрофічне цунамі. Повне спустошення узбережжя та прилеглої території. Суходіл затоплено на значну відстань. Пошкоджено найбільші кораблі. Значна кількість жертв.
Системи попередження цунамі[ред. | ред. код]
Цунамі можуть призводити до значних руйнувань на узбережжі та островах, навіть на відстанях, де початковий землетрус реєструється лише приладами.
Найбільшу загрозу цунамі становлять для місць на узбережжі океанів неподалік сейсмічних зон — о. Гаїті, Японія, Філіппіни. Понад 80 % усіх цунамі реєструються на периферії Тихого океану.
Поштовхи від землетрусу, які фіксують сейсмографи, передаються по земній корі в декілька разів швидше від руху хвилі цунамі. Системи попередження цунамі будуються здебільшого на обробці сейсмічної інформації: якщо землетрус має магнітуду понад 7 і його епіцентр розташовано під водою, подається попередження про цунамі. Залежно від регіону та заселеності узбережжя сигнали можуть відрізнятися. Досить ефективним способом для встановлення небезпеки цунамі є спостереження за рівнем води з допомогою мореографа (прилад для автоматичного запису коливань рівня води). Значні підйоми рівня в районах близьких до зони землетрусу свідчать про загрозу для населення прибережних районів. Певним попередженням про надходження цунамі може служити раптовий відступ води від берегів, що передує хвилі.
Суттєвим моментом системи попередження є інформованість населення. Дуже важливо, щоб мешканці узбережжя уявляли, яку загрозу становить цунамі. Наприклад, в Японії існують численні освітні програми про природні катастрофи, а в Індонезії здебільшого не знають про цунамі, що й зумовило велику кількість жертв цунамі 2004 в Індонезії року попри те, що у мешканців цієї країни мав би бути відповідний досвід.
Найбільші цунамі другої половини XX і початку XXI століть[ред. | ред. код]
Друга половина XX століття[ред. | ред. код]
Цунамі, спричинене потужним землетрусом (оцінка магнітуди за різними джерелами становить від 8,3 до 9), що стався у Тихому океані за 130 кілометрів від узбережжя Камчатки. Три хвилі заввишки до 15—18 метрів (за різними джерелами) знищили місто Сєверо-Курильськ та завдали збитків низці інших населених пунктів. За офіційними даними, загинули понад дві тисячі людей.
Цунамі, викликане землетрусом з магнітудою 8,6, що стався на Андреянівських островах (Аляска)[2], який утворив дві хвилі, із середньою висотою 15 і 8 метрів відповідно. На острові Кауаї, хвиля сягала висоти 16 м. Крім того в результаті землетрусу прокинувся вулкан Всевідова, розташований на острові Умнак і, який не вивергався близько 200 років. Через стихійне лихо загинуло понад 300 осіб.
- 9.07.1958 затока Літуйя, (південний захід Аляски, США).
В результаті землетрусу магнітудою 7,8[3] з гір стався великий зсув ґрунту. У води затоки звалилось близько 30 мільйонів кубічних метрів каміння та льоду[4]. Це привело до утворення гігантської хвилі цунамі висотою понад 525 метрів, що рухалась зі швидкістю 160 км/год[4]. Вона вважається найвищою хвилею цунамі, що відома людству[6]. Жертвами стихійного лиха стали 5 людей[7]
- 27.03.1964 Аляска, (США).
Найбільший на Алясці землетрус (магнітудою 9,2), стався у затоці Принца Вільяма, спричинив цунамі з декількох хвиль, з найбільшою висотою — 67 метрів. Узбережжя Аляски зазнало ударів п’яти цунамі. Завдяки тому що перша хвиля не виявилася найбільш руйнівною, жителі прибережних міст встигли евакуюватися. В результаті катастрофи загинуло 139 людей[8].
Землетрус з магнітудою 7,1, стався на північно-західному узбережжі острова Нова Гвінея, викликав потужний підводний зсув ґрунту, який породив цунамі, у результаті якого загинуло 2183 особи. Максимальна висота хвилі сягала 15 м[9].
XXI століття[ред. | ред. код]
Поширення хвиль цунамі після землетрусу у Японії 11 березня 2011 року. NOAA- 26.12.2004 Південно-Східна Азія.
О 00:58 стався землетрус в Індійському океані — один з найпотужніших (магнітудою 9,1) серед зареєстрованих, що спричинив найсмертоносніше з усіх відомих цунамі. Висота хвиль досягала від 30 до 50 метрів. Від цунамі постраждали 14 країн Азії (Індонезія — 180 тис. осіб загинуло, Шрі-Ланка — понад 31 тис. осіб загинуло, Таїланд — понад 5 тис. загиблих та ін.) та Східної Африки (Сомалі та ін.). Загальне число загиблих становить 227898 осіб[10].
Цунамі, викликане землетрусом магнітудою 8,1, що стався у південній частині Тихого океану. Висота хвиль досягала 12 метрів. Хвилі у декілька метрів висотою досягли і узбережжя Нової Гвінеї. Жертвами цунамі стали 50 людей.
Сильний землетрус магнітудою 8,9[11] з епіцентром, що знаходився у 373 км на північний схід від Токіо, спричинив цунамі з висотою хвилі, що перевищувала 40 метрів. За отриманими даними, гіпоцентр землетрусу був на глибині 32 км східніше від північної частини острова Хонсю[12], і простягався на відстань до 500 км. Крім того, землетрус і викликане ним цунамі стали причиною аварії на Першій Фукусімській АЕС.
Станом на 10 липня 2015 року офіційне число загиблих в результаті землетрусу та цунамі у 12 префектурах Японії становить 15 892 осіб, 2 576 осіб вважаються зниклими безвісти в 6 префектурах, 6 152 осіб поранено у 20 префектурах[13]
Суперцунамі — це падіння на поверхню планети небесних тіл. На думку вчених, простежується закономірність в різких кліматичних змінах на кордоні плейстоцену та голоцену і падінням великих метеоритів на земну поверхню в акваторію океанів. У деяких дослідженнях представлені геологічні, археологічні та історичні свідчення трьох найбільших кліматичних катастроф, які можливо відбувались на Землі — 12,900, 4300-4500 років тому та в 536—540 рр. нашої ери.
Древні сліди суперцунамі[ред. | ред. код]
Міжнародна команда археологів під керівництвом фахівців з Колумбійського університету (США) робили дослідження наслідків катастрофічного зсуву ґрунту, що стався в давнину в архіпелазі Кабо-Верде і викликав гігантське цунамі, закинув масивні валуни на величезне плато. За словами науковців, такі події надзвичайно рідкісні, але разом з тим можуть бути і надзвичайно руйнівними, якщо вони трапляться поблизу населеної прибережної зони.
Сама катастрофа сталася близько 73 тис. років тому біля західного узбережжя Африки. Вчені вже встановили причину — виверження вулкана на Фого, одному з південних островів архіпелагу. Сліди вибуху на краю кальдери вулкана дозволяють представити величину гірської секції, яка була знищена ним. Вибух був справді величезний. Сьогодні 160 кубічних кілометрів породи, яка колись становила гірський схил, знаходиться на морському дні. А на о. Сантьяго на відстані в 55 км від нього вчені виявили шари піску, принесеного цунамі.
Крім того вчені виявили на о. Сантьяго численні валуни, хаотично розкидані по місцевості. Вченими було описано 49 валунів, починаючи від порівняно невеликих, і закінчуючи величезними брилами, завбільшки з вантажівку і вагою більше 700 тонн. Вчені вважають, що вони також з’явилися тут в результаті катастрофічного виверження. Беручи до уваги розміри валунів, висоту плато і рельєф місцевості, вони припустили, що цунамі, що виникло в результаті виверження вулкана, могло розкидати валуни до місць висотою до 270 м над рівнем моря, аж до о. Сантьяго.
В 1958 році зафіксовано землетрус на Алясці, який викликав зсув у бухті Літуйя (США), висота цунамі сягала заввишки 525 м . Це була найвища хвиля із зареєстрованих документально.
Руйнівна сила раптового обвалення схилу вулканом чи підводного зсуву, що викликають цунамі, все ще недооцінена. Хвилі, що виникають в результаті таких подій, цілком здатні зруйнувати цілі міста. Найбільш небезпечними місцями вчені виокремлюють найвищі точки в Тихому океані, де розташовуються тисячі вулканічних острівців.
- ↑ Тегюль Мари Цунами: большая волна, заливающая бухту. (рос.)
- ↑ USGS Earthquake Hazards Program — Andreanof Islands, Alaska, Magnitude 8.6
- ↑ Significant Earthquake. Natural Hazards. National Centers for Environmental Information. Процитовано 2016-04-23.
- ↑ а б Leonard, L J; Rogers, G C; Hyndman, R D (2010). Open File 6552 (Annotated bibliography of references relevant to tsunami hazard in Canada). Geological Survey of Canada. Natural Resources Canada. с. 247-249.
- ↑ Мегацунами в заливе Литуйя. National Geographic. Архів оригіналу за 2014-02-01. Процитовано 2014-07-14.
- ↑ Coffman, Jerry L; von Hake, Carl A., ред. (1970). Earthquake History of the United States. United States Department of Commerce/Department of the Interior. с. 108. Publication 41-1.
- ↑ Tsunami Events Search – sorted by Date, Country. National Geophysical Data Center.
- ↑ Sissano Papua New Guinea earthquake and tsunami Архівовано 2 лютий 2018 у Wayback Machine. // National Geophysical Data Center
- ↑ Magnitude 9.1 – OFF THE WEST COAST OF SUMATRA. U.S. Geological Survey. Архів оригіналу за 17 August 2012. Процитовано 26 August 2012.
- ↑ Magnitude 8.9 — Near the east coast of Honshu, Japan 2011-3-11 05:46:23 UTC. 11-03-2011. Архів оригіналу за 30-05-2012. Процитовано 2011-03-11.
- ↑ 11 March 2011, MW 9.0, Near the East Coast of Honshu Japan Tsunami
- ↑ Damage Situation and Police Countermeasures (en). National Police Agency of Japan. 2015-07-10. Процитовано 2015-07-02.
Мегацунами в заливе Литуйя — Википедия
Материал из Википедии — свободной энциклопедии
Мегацунами в заливе Литуйя — стихийное бедствие, произошедшее 9 июля 1958 года в заливе Литуйя на юго-востоке Аляски. В результате землетрясения магнитудой 8,3 с гор сошёл мощный оползень. В воды залива обрушилось около 30 миллионов кубических метров камней и льда[1]. Это привело к образованию гигантской волны цунами высотой 524 метра[1]. Это самая высокая волна цунами, известная человечеству[2]. Жертвами стихийного бедствия стали 5 человек[3].
Литуйя представляет собой фьорд, расположенный на разломе Фэруэтер в северо-восточной части залива Аляска. Это Т-образная бухта длиной 14 километров и до трёх километров в ширину. Максимальная глубина составляет 220 м. Узкий вход в бухту имеет глубину всего 10 м[4]. В залив Литуйя спускаются два ледника, каждый из которых имеет длину около 19 и ширину до 1,6 км. За предшествующее описываемым событиям столетие в Литуйе уже несколько раз наблюдались волны высотой более 50 метров: в 1854, 1899 и 1936 годах[5][6].
Часть южного берега залива ЛитуйяЗемлетрясение магнитудой от 7,9 до 8,3 по шкале Рихтера произошло 9 июля 1958 года. Эпицентр находился в районе хребта Фэруэтер примерно в 21 км к юго-востоку от залива Литуйя. Землетрясение было самым сильным в этом регионе более чем за 50 лет[3].
Землетрясение вызвало субаэральный камнепад в устье ледника Гильберт в заливе Литуйя. В результате этого оползня более 30 миллионов кубических метров горных пород рухнули в залив и привели к образованию мегацунами[4]. В результате этой катастрофы погибло 5 человек: трое погибли на острове Хантаак и ещё двоих смыло волной в заливе[3]. В Якутате, единственном постоянном населённом пункте вблизи эпицентра, были повреждены объекты инфраструктуры: мосты, доки и нефтепроводы.
После землетрясения проводилось исследование подлёдного озера, расположенного к северо-западу от изгиба ледника Литуйя в самом начале залива. Оказалось, что озеро опустилось на 30 метров. Этот факт послужил основанием для ещё одной гипотезы образования гигантской волны высотой более 500 метров. Вероятно, во время схода ледника большой объём воды попал в залив через ледяной тоннель под ледником. Впрочем, сток воды из озера не мог быть основной причиной возникновения мегацунами[7].
9 июля 1958 года в 22:15 по местному времени было еще светло, когда в районе залива Литуйя произошло землетрясение. Была ясная погода, во время отлива вода опустилась примерно на 1,5 м. Билл и Вивиан Суонсон ловили рыбу на своей лодке, стоявшей на якоре в бухте Анкоридж у западной стороны залива Литуйя:
После первого толчка я упал с койки и посмотрел в сторону начала залива, откуда шел шум. Горы ужасно дрожали, камни и лавины неслись вниз. И особенно поражал ледник на севере, его называют ледник Литуйя. Обычно его не видно с того места, где я стоял на якоре. Люди качают головами, когда я говорю им, что я видел его в ту ночь. Я ничего не могу поделать, если они мне не верят. Я знаю, что ледник не виден с того места, где я стоял на якоре в бухте Анкоридж, но я также знаю и то, что видел его в ту ночь. Ледник поднялся в воздух и двинулся вперед, так что стал виден. Он, должно быть, поднялся на несколько сотен футов. Я не говорю, что он просто висел в воздухе. Но он трясся и прыгал как сумасшедший. Большие куски льда падали с его поверхности в воду. Ледник находился в шести милях от меня, и я видел большие куски, которые сваливались с него как с огромного самосвала. Это продолжалось некоторое время — трудно сказать, как долго, — а потом вдруг ледник исчез из поля зрения и над этим местом поднялась большая стена воды. Волна пошла в нашу сторону, после чего я был слишком занят, чтобы сказать, что ещё там происходило.
Оригинальный текст (англ.)
With the first jolt, I tumbled out of the bunk and looked toward the head of the bay where all the noise was coming from. The mountains were shaking something awful, with slide of rock and snow, but what I noticed mostly was the glacier, the north glacier, the one they call Lituya Glacier. I know you can’t ordinarily see that glacier from where I was anchored. People shake their heads when I tell them I saw it that night. I can’t help it if they don’t believe me. I know the glacier is hidden by the point when you’re in Anchorage Cove, but I know what I saw that night, too. The glacier had risen in the air and moved forward so it was in sight. It must have risen several hundred feet. I don’t mean it was just hanging in the air. It seems to be solid, but it was jumping and shaking like crazy. Big chunks of ice were falling off the face of it and down into the water. That was six miles away and they still looked like big chunks. They came off the glacier like a big load of rocks spilling out of a dump truck. That went on for a little while—its hard to tell just how long—and then suddenly the glacier dropped back out of sight and there was a big wall of water going over the point. The wave started for us right after that and I was too busy to tell what else was happening up there.
Максимальная высота волны, 516 метров, была измерена на основании степени ущерба, причинённого растительности на склонах бухты[1].
- ↑ 1 2 3 Leonard, L J; Rogers, G C; Hyndman, R D. Open File 6552 (Annotated bibliography of references relevant to tsunami hazard in Canada) // Geological Survey of Canada (неопр.). — Natural Resources Canada, 2010. — С. 247—249.
- ↑ Мегацунами в заливе Литуйя (неопр.) (недоступная ссылка). National Geographic. Дата обращения 14 июля 2014. Архивировано 1 февраля 2014 года.
- ↑ 1 2 3 Earthquake History of the United States (неопр.) / Coffman, Jerry L; von Hake, Carl A.. — Министерство торговли США/Министерство внутренних дел США, 1970. — С. 108.
- ↑ 1 2 Mader, Charles L Mega-Tsunamis (неопр.) (PDF). Los Alamos National Laboratory (апрель 2000). Дата обращения 11 февраля 2012.
- ↑ Giant Waves in Lituya Bay, Alaska (неопр.). UWSP. Дата обращения 3 декабря 2013. Архивировано 23 ноября 2004 года.
- ↑ Casey, Susan (2010), The Wave, Doubleday, с. 153–58 .
- ↑ Pararas-Carayannis, George The Mega-Tsunami of July 9, 1958 in Lituya Bay, Alaska (неопр.) (1999). Дата обращения 11 февраля 2012.
Цунами Википедия
Цуна́ми[1] (яп. 津波 IPA: [t͡sɯnä́mí][2], где 津 — «бухта, залив», 波 — «волна») — крупные волны, порождаемые мощным воздействием на всю толщу воды в океане или другом водоёме.
Цунами, по мнению некоторых специалистов, являются солитонами[3]. Причиной большинства цунами являются подводные землетрясения, во время которых происходит резкое смещение (поднятие или опускание) участка морского дна. Цунами образуются при землетрясении любой силы, но большой силы достигают те, которые возникают из-за сильных землетрясений (с магнитудой более 7). В результате землетрясения распространяется несколько волн. Более 80 % цунами возникают на периферии Тихого океана. Первое научное описание явления дал Хосе де Акоста в 1586 году в Лиме, Перу, после мощного землетрясения, тогда цунами высотой 25 метров ворвалось на сушу на расстояние 10 км.
Теория
Когда волна попадает на мелководье, она замедляется, а ее амплитуда (высота) увеличивается.В открытом океане волны цунами распространяются со скоростью g⋅H{\displaystyle {\sqrt {g\cdot H}}}, где g{\displaystyle g} — ускорение свободного падения, а H{\displaystyle H} — глубина океана (так называемое приближение мелкой воды, когда длина волны существенно больше глубины). При средней глубине 4 км скорость распространения получается 200 м/с или 720 км/ч. В открытом океане высота волны обычно не превышает 50 см, и поэтому волна не опасна для судоходства, её даже не могут заметить люди на борту лодки или корабля. Период волны — от минут до часа, длина волны может быть от десятка до нескольких сот километров, скорость в океане — 600—900 км/ч, на континентальном шельфе — 100—300 км/ч[4][5]. При выходе волн на мелководье, вблизи береговой черты, их скорость и длина уменьшаются, а высота увеличивается. У берега высота цунами может достигать нескольких десятков метров. Наиболее высокие волны, до 30—40 метров[источник не указан 1005 дней], образуются у крутых берегов, в клинообразных бухтах и во всех местах, где может произойти фокусировка. Районы побережья с закрытыми бухтами являются менее опасными. Цунами обычно проявляется как серия волн, так как волны длинные, то между приходами волн может проходить более часа. Именно поэтому не стоит возвращаться на берег после ухода очередной волны, а стоит выждать несколько часов.
Высоту волны на прибрежном мелководье (Hмелк.{\displaystyle H_{\text{мелк.}}}), не имеющем защитных сооружений, можно посчитать по следующей эмпирической формуле:[6]
- Hмелк.=1,3⋅Hглуб.⋅(Bглуб./Bмелк.)1/4,{\displaystyle H_{\text{мелк.}}=1,3\cdot H_{\text{глуб.}}\cdot (B_{\text{глуб.}}/B_{\text{мелк.}})^{1/4},} м
где
- Hглуб.{\displaystyle H_{\text{глуб.}}} — изначальная высота волны в глубоком месте;
- Bглуб.{\displaystyle B_{\text{глуб.}}} — глубина воды в глубоком месте;
- Bмелк.{\displaystyle B_{\text{мелк.}}} — глубина воды в прибрежной отмели;
Причины образования цунами
Землетрясения, извержения вулканов и другие подводные взрывы (в том числе взрывы подводных ядерных устройств), оползни, ледники, метеориты и другие разрушения выше или ниже уровня воды — всё это обладает достаточным потенциалом, чтобы вызвать цунами[7]. Первое предположение о том, что цунами связано с подводными землетрясениями, было высказано древнегреческим историком Фукидидом[8][9].
Наиболее распространённые причины
- Подводное землетрясение (около 85 % всех цунами). При землетрясении под водой происходит взаимное смещение дна по вертикали: часть дна опускается, а часть приподнимается. Поверхность воды приходит в колебательное движение по вертикали, стремясь вернуться к исходному уровню, — среднему уровню моря, — и порождает серию волн. Далеко не каждое подводное землетрясение сопровождается цунами. Цунамигенным (то есть порождающим волну цунами) обычно является землетрясение с неглубоко расположенным очагом. Проблема распознавания цунамигенности землетрясения до сих пор не решена, и службы предупреждения ориентируются на магнитуду землетрясения. Наиболее сильные цунами генерируются в зонах субдукции. Также, необходимо чтобы подводный толчок вошёл в резонанс с волновыми колебаниями.
- Оползни. Цунами такого типа возникают чаще, чем это оценивали в XX веке (около 7 % всех цунами). Зачастую землетрясение вызывает оползень, и он же генерирует волну. 9 июля 1958 года в результате землетрясения на Аляске в бухте Литуйя возник оползень. Масса льда и земных пород обрушилась с высоты 1100 м. Образовалась волна, достигшая на противоположном берегу бухты высоты более 524 м.[10][11] Подобного рода случаи весьма редки и, конечно, не рассматриваются в качестве эталона. Но намного чаще происходят подводные оползни в дельтах рек, которые не менее опасны. Землетрясение может быть причиной оползня и, например, в Индонезии, где очень велико шельфовое осадконакопление, оползневые цунами особенно опасны, так как случаются регулярно, вызывая локальные волны высотой более 20 метров.
- Вулканические извержения (около 5 % всех цунами). Крупные подводные извержения обладают таким же эффектом, что и землетрясения. При сильных вулканических взрывах образуются не только волны от взрыва, но вода также заполняет полости от извергнутого материала или даже кальдеру, в результате чего возникает длинная волна. Классический пример — цунами, образовавшееся после извержения Кракатау в 1883 году. Огромные цунами от вулкана Кракатау наблюдались в гаванях всего мира и уничтожили в общей сложности 5000 кораблей, погибло 36 000 человек[12].
Другие возможные причины
- Человеческая деятельность. В век атомной энергии у человека в руках появилось средство способное вызывать сотрясения, раньше доступные лишь природе. В 1946 году США произвели в морской лагуне глубиной 60 м подводный атомный взрыв с тротиловым эквивалентом 20 тыс. тонн. Возникшая при этом волна на расстоянии 300 м от взрыва поднялась на высоту 28,6 м, а в 6,5 км от эпицентра ещё достигала 1,8 м. Но для дальнего распространения волны нужно вытеснить или поглотить некоторый объём воды, поэтому волны от подводных оползней и взрывов всегда имеют локальный характер. Если одновременно произвести взрыв нескольких водородных бомб на дне океана, вдоль какой-либо линии, возможно образование более высокой волны, за счёт кумулятивного эффекта, но не попадающее в категорию цунами в силу того, что для формирования цунами требуется сдвиг всей толщи воды, тогда как взрыв формирует только поверхностные волны. Компьютерное моделирование таких экспериментов проводились и доказало отсутствие каких-либо существенных результатов по сравнению с более доступными видами вооружений. В настоящее время любые подводные испытания атомного оружия запрещены серией международных договоров.
- Падение крупного метеорита диаметром в сотни метров создаст чрезвычайно высокую волну, однако круговая волна от точечного источника быстро потеряет свою энергию и скорее всего не нанесет суше существенного вреда. Цунами от крупного метеорита может быть опасным в том случае, если метеорит упадет в пределах 10-20 километров от береговой линии.[13][14]
- Ветер может вызывать большие волны (до 21 м), но такие волны не являются цунами, так как они короткопериодные и не могут вызывать затопления на берегу. Однако возможно образование метеоцунами при резком изменении атмосферного давления или при быстром перемещении аномалии атмосферного давления. Такое явление наблюдается на Балеарских островах и называется риссага (en:Rissaga).
Искусственное цунами
Искусственное цунами может быть вызвано прежде всего ядерным взрывом . Во время ядерных испытаний не раз проверялась мощность цунами , создаваемых взрывами разной мощности . Так же в России создан подводный беспилотник с атомной бомбой «Статус-6» , способный вызвать цунами при взрыве .
- Волны искусственного цунами
Ядерное испытание США «Hardtack Umbrella» бомбы мощностью 20 КТ в ТЭ в Тихом океане на фоне судна .
Признаки появления цунами
- Внезапный быстрый отход воды от берега на значительное расстояние и осушка дна. Чем дальше отступило море, тем выше могут быть волны цунами. Люди, находящиеся на берегу и не знающие об опасности, могут остаться из любопытства или для сбора рыбы и ракушек. В данном случае необходимо как можно скорее покинуть берег и удалиться от него на максимальное расстояние — таким правилом следует руководствоваться, находясь, например, в Японии, на Индоокеанском побережье Индонезии, Камчатке. В случае телецунами волна обычно подходит без отступления воды.
- Землетрясение. Эпицентр землетрясения находится, как правило, в океане. На берегу землетрясение обычно гораздо слабее, а часто его нет вообще. В цунамиопасных регионах есть правило, что если ощущается землетрясение, то лучше уйти дальше от берега и при этом забраться на холм, таким образом, заранее подготовиться к приходу волны.
- Необычный дрейф льда и других плавающих предметов, образование трещин в припае.
- Громадные взбросы у кромок неподвижного льда и рифов, образование толчеи, течений
Системы предупреждения цунами
Системы предупреждения цунами строятся главным образом на обработке сейсмической информации. Если землетрясение имеет магнитуду более 7,0 (в прессе это называют баллами по шкале Рихтера, хотя это ошибка, так как магнитуду не измеряют в баллах. Измеряют в баллах балльность, характеризующую интенсивность сотрясения грунта во время землетрясения) и центр расположен под водой, то подаётся предупреждение о цунами. В зависимости от региона и заселённости берегов условия выработки сигнала тревоги могут быть различными.
Вторая возможность предупреждения о цунами это предупреждение «по факту» — способ более надёжный, так как практически отсутствуют ложные тревоги, но часто такое предупреждение может быть выработано слишком поздно. Предупреждение по факту полезно для телецунами — глобальных цунами, оказывающих влияние на весь океан и приходящих на другие границы океана спустя несколько часов. Так, индонезийское цунами в декабре 2004 года для Африки является телецунами. Классическим случаем являются Алеутские цунами — после сильного заплеска на Алеутах можно ожидать существенный заплеск на Гавайских островах. Для выявления волн цунами в открытом океане используются придонные датчики гидростатического давления. Система предупреждения, основанная на таких датчиках со спутниковой связью с приповерхностного буя, разработанная в США, называется DART (en:Deep-ocean Assessment and Reporting of Tsunamis). Обнаружив волну тем или иным образом, можно достаточно точно определить время её прибытия в различные населённые пункты.
Существенным моментом системы предупреждения является своевременное распространение информации среди населения. Очень важно, чтобы население представляло, какую угрозу несёт с собой цунами. В Японии имеется множество образовательных программ по природным катастрофам, а в Индонезии население в основном не знакомо с цунами, что и стало основной причиной большого количества жертв в 2004 году. Также большое значение имеет законодательная база по застройке прибрежной зоны.
Наиболее крупные цунами
XX век
Вызвано мощным землетрясением (оценка магнитуды по разным источникам колеблется от 8,3 до 9), которое произошло в Тихом океане в 130 километрах от побережья Камчатки. Три волны высотой до 15—18 метров (по разным источникам) уничтожили город Северо-Курильск и нанесли ущерб ряду прочих населённых пунктов. По официальным данным, погибло более двух тысяч человек.
Вызвано землетрясением с магнитудой 9,1, произошедшим на Андреяновских островах (Аляска), которое вызвало две волны, со средней высотой волн 15 и 8 метров соответственно. Кроме того в результате землетрясения проснулся вулкан Всевидова, расположенный на острове Умнак и не извергавшийся около 200 лет. В катастрофе погибло более 300 человек.
- 9.07.1958, залив Литуйя, (юго-запад Аляски).
Землетрясение, произошедшее севернее залива (на разломе Фэруэтер), инициировало сильные оползни на склоне расположенной над бухтой Литуйя горы (около 30 миллионов кубических метров земли, камней и льда). Вся эта масса завалила северную часть бухты и вызвала огромную волну рекордной высоты более 500 метров, движущуюся со скоростью 160 км/ч[15][16]. Максимальная высота, на которой были зафиксированы разрушения, вызванные волной, составляла 524 метра над уровнем моря (или 1720 футов)[17][18].
- 28.03.1964, Аляска, (США).
Крупнейшее на Аляске землетрясение (магнитудой 9,2), произошедшее в проливе Принца Уильяма, вызвало цунами из нескольких волн, с наибольшей зафиксированной высотой (в момент появления) — 67 метров. В результате катастрофы (в основном, из-за цунами) по разным оценкам погибло от 120 до 150 человек.
Землетрясение с магнитудой 7,1, произошедшее на северо-западном побережье острова Новая Гвинея, вызвало мощный подводный оползень, породивший цунами, в результате которого погибло более 2000 человек.
XXI век
Распространение цунами по Индийскому океану
- 6 сентября 2004 года, побережье Японии
В 110 км от побережья полуострова Кии и в 130 км от побережья префектуры Коти произошли два сильных землетрясения (магнитудой до 6,8 и 7,3 соответственно), вызвавших цунами, с высотой волн до одного метра. Пострадало несколько десятков человек.
- 26 декабря 2004, Юго-Восточная Азия.
В 00:58 произошло мощнейшее землетрясение — второе по мощности из всех зарегистрированных (магнитудой 9,3), вызвавшее самое смертоносное из всех известных цунами. От цунами пострадали страны Азии (Индонезия — 180 тыс. человек, Шри-Ланка — 31—39 тыс. человек, Таиланд — более 5 тыс. человек и др.) и африканская Сомали. Общее количество погибших превысило 235 тыс. человек.
Вызвано землетрясением магнитудой 8, произошедшим в южной части Тихого океана. Волны в несколько метров высотой достигли и Новой Гвинеи. Жертвами цунами стали 52 человека.
- 11 марта 2011, Япония.
Сильнейшее землетрясение магнитудой 9,0 с эпицентром, находящимся в 373 км северо-восточнее Токио, вызвало цунами с высотой волны, превышавшей 40 метров. По полученным данным, гипоцентр землетрясения находился на глубине 32 км к востоку от северной части острова Хонсю[19], и простирался на расстояние около 500 км, что видно из карты афтершоков. Кроме того, землетрясение и последовавшее за ним цунами стали причиной аварии на АЭС Фукусима I.
По состоянию на 2 июля 2011 года официальное число погибших в результате землетрясения и цунами в Японии составляет 15 524 человек, 7 130 человек числятся пропавшими без вести, 5 393 человек ранены.
Суперцунами
Некоторыми специалистами высказывается мнение, что главной причиной, вызывающей особенно сильные, так называемые суперцунами, — это падение на поверхность планеты небесных тел. По их мнению, прослеживается закономерность в резких климатических изменениях на границе плейстоцена и голоцена и падением крупных метеоритов на земную поверхность и в акваторию океанов[20]. В их исследованиях представлены геологические, археологические и исторические свидетельства трёх крупнейших климатических катастроф, возможно происходивших на Земле около 12 900 лет тому назад, 4300—4500 лет тому назад и в 536—540 годах нашей эры[21]. Для изучения проблемы космогенных цунами была создана международная научная группа Holocene Impact Working Group.
См. также
Примечания
- ↑ Большой толковый словарь русского языка. — 1-е изд-е: СПб.: Норинт
- ↑ 「NHK日本語発音アクセント辞典」。2002年。ISBN 978-4-14-039360-4
- ↑ Филиппов А. Т. Многоликий солитон // Библиотечка «Квант». — Изд. 2, перераб. и доп.. — М.: Наука, 1990. — 288 с.
- ↑ Гир Дж., Шах Х. Зыбкая твердь: Что такое землетрясение и как к нему подготовиться = Terra Non Firma. Understanding and Preparing for Earthquakes / Пер. с англ. д-ра физ.-мат. наук Н. В. Шебалина. — М.: Мир, 1988. — С. 72—73. — 63 000 экз.
- ↑ Edward Bryant. Tsunami: The Underrated Hazard. — 3. — Springer, 2014. — С. 19—22.
- ↑ Действие атомного оружия. Пер. с англ. — М.: Изд-во иностр. лит., 1954. — С. 102. — 439 с.
- ↑ Barbara Ferreira. When icebergs capsize, tsunamis may ensue (неопр.). Nature (17 апреля 2011). Дата обращения 27 апреля 2011. Архивировано 23 июня 2012 года.
- ↑ Thucydides: «A History of the Peloponnesian War», 3.89.1-4
- ↑ Smid, T. C. ‘Tsunamis’ in Greek Literature (неопр.). — Greece & Rome. — 1970. — Т. 17. — С. 100—104.
- ↑ Тегюль Мари. Цунами: Большая Волна, Заливающая Бухту.
- ↑ Biggest Tsunami, Lituya Bay Tsunami (неопр.) (недоступная ссылка). Дата обращения 14 октября 2009. Архивировано 21 октября 2009 года.
- ↑ Volcanogenic Tsunamis (неопр.). Oregon State University.. Дата обращения 4 января 2015.
- ↑ Что случится, если в океан упадет астероид
- ↑ Что случится, если в океан упадет метеорит?
- ↑ Leonard, L J; Rogers, G C; Hyndman, R D. Open File 6552 (Annotated bibliography of references relevant to tsunami hazard in Canada) // Geological Survey of Canada (неопр.). — Natural Resources Canada, 2010. — С. 247—249. (англ.)
- ↑ Батыр Каррыев. Катастрофы в природе: землетрясения.
- ↑ Цунами на Аляске в 1957 и 1958 гг
- ↑ МЕГА цунами от 9 июля 1958 года в Литуйя Бэй, Аляска
- ↑ 11 March 2011, MW 9.0, Near the East Coast of Honshu Japan Tsunami
- ↑ А. С. Алексеев, В. К. Гусяков. О ВОЗМОЖНОСТИ КОСМОГЕННЫХ ЦУНАМИ В МИРОВОМ ОКЕАНЕ
- ↑ Гусяков В. К. От Тунгуски до Чикскулуба. «Наука в Сибири» № 43 (2828), 27 октября 2011 г.
Литература
- Воробьев Ю. Л., Акимов В. А., Соколов Ю. И. Цунами: предупреждение и защита / МЧС России. — М., 2006. — 264 с. Архивная копия от 16 апреля 2016 на Wayback Machine
- Соловьёв С. Л., Го Ч. Н. Каталог цунами на западном побережье Тихого океана (173—1968 гг.). — М.: Наука, 1974. — 308 с. — 1200 экз.
- Пелиновский Е. Н. Гидродинамика волн цунами. — Нижний Новгород: ИПФ РАН, 1996. — 277 с.
- Локальные цунами: предупреждение и уменьшение риска: Сборник статей / Под ред. Б. В. Левина, М. А. Носова. — М.: Янус-К, 2002.
- Левин Б. В., Носов М. А. Физика цунами и родственных явлений в океане. — М.: Янус-К, 2005. — 360 с.
- Левин Б. В., Сасорова Е. В. О шестилетней периодичности возникновения цунами в Тихом океане // Физика Земли. 2002. № 12. С. 40-49.
- Землетрясения и цунами (учебное пособие, содержание)
- Куликов Е. А. «Физические основы моделирования цунами» (учебный курс)
- Шойгу С. К., Кудинов С. М., Неживой А. Ф. и др. Катастрофические природные явления. МЧС России, 1997.
- Гусяков В.К.Ground Zero: Мегаземлетрясения – главная угроза безопасности морских побережий // Наука из первых рук. — том 78. № 2. 23 июля 2018.
Ссылки
Цунами, Сатоси — Википедия
Материал из Википедии — свободной энциклопедии
Сатоси Цунами | |
---|---|
Родился | 14 августа 1961(1961-08-14) (58 лет) Токио, Япония |
Гражданство | Япония |
Рост | 173 см |
Позиция | Защитник |
|
Сатоси Цунами (яп. 都並 敏史 Цунами Сатоси, род. 14 августа 1961 года в Токио) — японский футболист и тренер. Выступал за национальную сборную. Отец японского футболиста Юты Цунами.
На протяжении своей футбольной карьеры выступал за клубы «Верди Кавасаки», «Ависпа Фукуока», «Бельмаре Хирацука». Цунами стал играть в футбол еще в молодёжной команде «Верди Кавасаки» (ранее — «Ёмиури»), а выступать за основу клуба стал с 1980 года. В его составе он пять раз становился чемпионом страны, трижды — обладателем Кубка лиги и Кубка Императора. Это была золотая эра в истории клуба и самого Цунами, который трижды был включен в символическую сборную чемпионата (1982, 1983 и 1984). В 1992 году японская футбольная лига была расформирована и вместо нее образована Джей-лига. В это время Цунами всё реже появляется на поле. Перед тем как завершить карьеру он недолгое время выступает в клубах «Ависпа Фукуока» (1996-1997) и «Бельмаре Хирацука» (1997-1998). Всего Цунами провел 267 матчей и забил 5 голов в высшем дивизионе страны.
С 1980 по 1995 год сыграл за национальную сборную Японии 78 матчей, в которых забил 2 гола[1]. Первое появление на поле состоялось 22 декабря 1980 года в отборочном матче к чемпионату мира против Сингапура в Гонконге. Первый гол за сборную Цунами забил 20 сентября 1986 года на Азиатских играх в ворота Непала в Тэджоне. После матчей квалификации на Летние Олимпийские игры 1988 года Цунами долгое время не вызывался в национальную команду. Но через пять лет он получил приглашение принять участие в Кубке Азии по футболу 1992 года. Цунами провел все игры на турнире (кроме одной по причине дисквалификации), который сборная Японии выиграла.
Тренер национальной сборной Ханс Офт вызвал Цунами на отборочные матчи к чемпионату мира 1994 года, назвав его ключевым игроком команды, даже несмотря на то, что игрок был травмирован. Он так и не провел ни одной игры в рамках квалификации, поскольку восстановление проходило не так быстро, как всем бы хотелось. 28 октября 1993 года в последнем решающем матче Япония потеряла надежду на выход в финальный турнир чемпионата мира, когда в дополнительное время футболист сборной Ирака сравнял счет. Японские болельщики окрестили эту встречу «Агонией в Дохе» или «Трагедией в Дохе», и называли отсутствие Цунами на поле в тот день одной из главных причин неудачи.
После окончания игровой карьеры Цунами выступал экспертом на телевидении и работал тренером в молодежной команде «Токио Верди». Он получил тренерскую лицензию S-класса, которая была необходимым условием для управления клубом Джей-лиги в 2004 году. А уже в следующем был назначен главным тренером клуба второго дивизиона «Вегалта Сэндай». Руководство команды надеялось на повышение в классе, но сезон она закончила лишь четвертой. После этого Цунами был уволен. В 2006 году он стал помощником Руя Рамоса, только получившего назначение в «Токио Верди». На тот момент клуб также вылетел во второй дивизион Джей-лиги, и тренерам не удалось вернуть команду обратно. После этого, в отличие от Рамоса, Цунами решил сменить место работы. Следующим его клубом в 2007 году стал «Сересо Осака», где Цунами проработал лишь до мая. В 2008 году он возглавил «Иокогаму», которая по окончании сезона заняла десятое место во втором дивизионе. Видимо, такой результат не устроил руководство и Цунами был уволен.
Командные[править | править код]
- «Ёмиури/Верди Кавасаки»
- Чемпион Первого Дивизиона Японской футбольной лиги: 1983, 1984, 1986/87, 1990/91, 1991/92
- Обладатель Кубка лиги: 1979, 1985, 1991
- Обладатель Кубка Императора: 1984, 1986, 1987
Международные[править | править код]
- Сборная Японии
- 1 Кубка Азии: 1992
Личные[править | править код]
- Символическая сборная Первого дивизиона японской футбольной лиги: 1982, 1983, 1984
В клубе[править | править код]
Основной источник: [2]В сборной[править | править код]
Основной источник: [1]Сборная Японии | ||
---|---|---|
Год | Матчи | Голы |
1980 | 3 | 0 |
1981 | 7 | 0 |
1982 | 8 | 0 |
1983 | 10 | 0 |
1984 | 5 | 0 |
1985 | 7 | 0 |
1986 | 5 | 2 |
1987 | 10 | 0 |
1988 | 0 | 0 |
1989 | 0 | 0 |
1990 | 0 | 0 |
1991 | 0 | 0 |
1992 | 10 | 0 |
1993 | 10 | 0 |
1994 | 0 | 0 |
1995 | 3 | 0 |
Итого | 78 | 2 |
Тренерская статистика[править | править код]
Основной источник: [3]Значение слова ЦУНАМИ. Что такое ЦУНАМИ?
ЦУНА́МИ, нескл., ср. Гигантские волны, возникающие на поверхности океана (чаще Тихого) в результате сильных подводных землетрясений. Такие [подводные] землетрясения вызывают огромные волны — цунами, которые, достигая берегов, производят страшные разрушения. Мезенцев, Энциклопедия чудес.
[Япон.]
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека
- Цуна́ми (яп. 津波 IPA: [t͡sɯnä́mí], где 津 — «порт, залив», 波 — «волна») — длинные и высокие волны, порождаемые мощным воздействием на всю толщу воды в океане или другом водоёме. Цунами, по мнению некоторых специалистов, являются солитонами. Причиной большинства цунами являются подводные землетрясения, во время которых происходит резкое смещение (поднятие или опускание) участка морского дна. Цунами образуются при землетрясении любой силы, но большой силы достигают те, которые возникают из-за сильных землетрясений (с магнитудой более 7). В результате землетрясения распространяется несколько волн. Более 80 % цунами возникают на периферии Тихого океана. Первое научное описание явления дал Хосе де Акоста в 1586 в Лиме, Перу, после мощного землетрясения, тогда цунами высотой 25 метров ворвалось на сушу на расстояние 10 км.
Источник: Википедия
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я стал чуточку лучше понимать мир эмоций.
Вопрос: арифметический — это что-то нейтральное, положительное или отрицательное?
Положительное
Отрицательное
Волны-убийцы — Википедия
Фотография большой волны, надвигающейся на торговое судно в Бискайском заливе. Приблизительно 1940-е годыВолны-убийцы (блужда́ющие во́лны, волны-монстры, белая волна, англ. rogue wave — волна-разбойник, freak wave — чокнутая волна; фр. onde scélérate — волна-злодейка, galéjade — дурная шутка, розыгрыш) — гигантские одиночные волны, возникающие в океане, высотой 20—30 метров (а иногда и больше), обладающие нехарактерным для морских волн поведением. «Волны-убийцы» представляют самую непосредственную опасность для судов и морских сооружений: корпус судна, встретившегося с такой волной, может не выдержать громадного давления обрушившейся на него воды (до 1000 кПа или 10 атм), и судно затонет за считанные минуты.
Важное обстоятельство, которое позволяет выделить феномен волн-убийц в отдельную научную и практическую тему и отделить от других явлений, связанных с волнами аномально большой амплитуды (например, цунами), — внезапность их появления. Хотя единой причины для волн-убийц, по-видимому, нет, но нелинейная динамика поверхностных волн на воде является одной из характерных причин формирования волн-убийц в океане[1].
Долгое время блуждающие волны считались вымыслом, так как они не укладывались ни в одну существовавшую на то время математическую модель возникновения и поведения морских волн, а также не находилось достаточного количества достоверных свидетельств. Однако 1 января 1995 года на нефтяной платформе «Дропнер» в Северном море у побережья Норвегии была впервые приборно зафиксирована волна высотой в 25,6 метра, названная волной Дропнера. Дальнейшие исследования в рамках проекта MaxWave («Максимальная волна»), который предусматривал мониторинг поверхности мирового океана с помощью радарных спутников ERS-1 и ERS-2 Европейского космического агентства (ESA), зафиксировали за три недели по всему земному шару более 10 одиночных гигантских волн, высота которых превышала 25 метров. Эти исследования заставляют по-новому рассмотреть причины гибели за прошлые два десятилетия судов такого размера, как контейнеровозы и супертанкеры, включив в число возможных причин и волны-убийцы.
Новый проект получил название Wave Atlas (Атлас волн) и предусматривает составление всемирного атласа наблюдавшихся волн-убийц и статистическую его обработку.
Существует несколько гипотез о причинах возникновения экстремальных волн. Многие из них лишены здравого смысла. Наиболее простые объяснения построены на анализе простой суперпозиции волн разной длины. Оценки, однако, показывают, что вероятность возникновения экстремальных волн в такой схеме оказывается слишком мала. Другая заслуживающая внимания гипотеза предполагает возможность фокусировки волновой энергии в некоторых структурах поверхностных течений. Эти структуры, однако, слишком специфичны для того, чтобы механизм фокусировки энергии мог объяснить систематическое возникновение экстремальных волн.
Интересно, что такие волны могут быть как гребнями, так и впадинами, что подтверждается очевидцами. Дальнейшее исследование привлекает эффекты нелинейности в ветровых волнах, способные приводить к образованию небольших групп волн (пакетов) или отдельных волн (солитонов), способных проходить большие расстояния без значительного изменения своей структуры. Подобные пакеты также неоднократно наблюдались на практике. Характерными особенностями таких групп волн, подтверждающими данную теорию, является то, что они движутся независимо от прочего волнения и имеют небольшую ширину (менее 1 км), причём высоты резко спадают по краям[2].
Численное моделирование волны-убийцыПрямое моделирование волн-убийц было предпринято в работах В. Е. Захарова, А. И. Дьяченко[3], Р. В. Шамина[4]. Численно решались уравнения, описывающие нестационарное течение идеальной жидкости со свободной поверхностью. Использование особого вида уравнений позволило проводить вычисления с большой точностью и на больших временны́х интервалах. В ходе численных экспериментов были получены характерные профили для волн-убийц, хорошо согласующиеся с экспериментальными данными.
В ходе большой серии вычислительных экспериментов по моделированию динамики поверхностных волн идеальной жидкости, имеющих характерные для океана физические параметры, были построены эмпирические функции частот возникновения волн-убийц в зависимости от крутизны (~энергии) и дисперсии начальных данных[5].
Экспериментальная демонстрация генерации и деструктивного воздействия волны-убийцы в волновом бассейне[6]Одной из проблем в изучении волн-убийц является сложность их получения в лабораторных условиях. В основном исследователи вынуждены работать с данными, полученными при наблюдениях в естественных условиях, причём такие данные весьма ограничены в силу непредсказуемого характера возникновения волны-убийцы.
В 2010 году впервые экспериментально были получены солитоны-бризеры Перегрина, являющиеся, по мнению многих учёных, возможным прототипом волн-убийц. Эти солитоны, являющиеся частным решением нелинейного уравнения Шрёдингера, были получены для оптической системы[7], однако уже в 2011 году эти же солитоны были получены и для волн на воде[8]. В 2012 году в ещё одном эксперименте учёным удалось продемонстрировать генерацию солитона-бризера более высокого порядка, для которого амплитуда в пять раз превышает амплитуду фонового волнения[6].
- Утром 7 февраля 1933 года на корабль ВМС США «Рамапо», который следовал из Манилы в Сан-Диего, обрушилась волна высотой 34 метра[9].
- 12 апреля 1966 года в средней Атлантике итальянский трансатлантический лайнер «Michelangelo» подвергся удару гигантской «белой» волны 20 метров высотой. Двух пассажиров смыло в море, один член экипажа умер спустя несколько часов, более 50 человек были ранены. Корабль получил серьёзные повреждения носовой части и одного из бортов[10].
- 11 сентября 1995 года британский трансатлантический лайнер «Куин Элизабет 2» в Северной Атлантике во время урагана Луиса зафиксировал 27-метровую волну[11].
- Германский лихтеровоз MS München пропал во время шторма 13 декабря 1978 года. В результате поисков были найдены отдельные обломки судна. Предположительно, корабль стал жертвой одной или нескольких волн-убийц.[12]
- Английский нефтерудовоз MV Derbyshire пропал во время тайфуна Orchid у берегов Японии 9 сентября 1980 года. Обломки были обнаружены и тщательно обследованы в 1994 году. Последующий анализ показал, что, учитывая погодные условия, «Дербишир» почти наверняка столкнулся с волнами высотой не менее 28 метров, и что даже намного меньшая волна-убийца легко сорвала бы одну или несколько крышек люков грузового отсека судна, что привело бы к быстрой гибели корабля.[13]
- Советский траулер «Картли» в декабре 1991 года стал жертвой волны-убийцы у берегов шотландского острова Гиа. Судно сначала село на мель, потом затонуло. Погибли 4 члена экипажа. Остальных спасли береговые спасательные службы[14].
- ↑ Р. В. Шамин. Математические вопросы волн-убийц. М.:Ленанд/URSS, 2016
- ↑ Frederic-Moreau. The Glorious Three, translated by M. Olagnon and G. A. Chase / Rogue Waves. 2004, Brest, France.
- ↑ A. I. Dyachenko, V. E. Zakharov. On the Formation of Freak Waves on the Surface of Deep Water. // Pis’ma v ZhETF. — 2008. — Т. 88, № 5. — С. 356—359.
- ↑ Р. В. Шамин. О существовании гладких решений уравнений Дьяченко, описывающих неустановившиеся течения идеальной жидкости со свободной поверхностью. // Доклады Российской академии наук. — 2006. — Т. 406, № 5. — С. 112—113.
- ↑ В. Е. Захаров, Р. В. Шамин. О вероятности возникновения волн-убийц. // Pis’ma v ZhETF. — 2010. — Т. 91, № 2. — С. 68—71.
- ↑ 1 2 A. Chabchoub, N. Hoffmann, M. Onorato, and N. Akhmediev. Super Rogue Waves: Observation of a Higher-Order Breather in Water Waves (англ.) // Phys. Rev. X. — 2012. — Vol. 2. — P. 011015. — DOI:10.1103/PhysRevX.2.011015.
- ↑ B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev & J. M. Dudley. The Peregrine soliton in nonlinear fibre optics (англ.) // Nature Physics. — 2010. — Vol. 6. — P. 790—795. — DOI:10.1038/nphys1740.
- ↑ A. Chabchoub, N. Hoffmann, and N. Akhmediev. Rogue Wave Observation in a Water Wave Tank (англ.) // Phys. Rev. Lett.. — 2011. — Vol. 106. — P. 204502. — DOI:10.1103/PhysRevLett.106.204502.
- ↑ Откуда берутся волны-убийцы? (рус.), Комсомольская правда (23 сентября 2004). Дата обращения 6 сентября 2017.
- ↑ Michelangelo accident (неопр.). www.michelangelo-raffaello.com. Дата обращения 6 сентября 2017.
- ↑ QE2 — History — Hurricane Luis (неопр.). www.qe2.org.uk. Дата обращения 6 сентября 2017.
- ↑ «Freak Wave – programme summary»www.bbc.co.uk/. BBC. 14 November 2002. Retrieved 15 January 2016.
- ↑ An Independent Assessment of the Sinking of the MV DERBYSHIRE (неопр.). Royal Institution of Naval Architects. Дата обращения 10 октября 2017.
- ↑ Елизавета Герсон. Последняя катастрофа морского флота СССР: 25 лет назад потерпел крушение траулер «Картли» (англ.). НТВ. Дата обращения 6 сентября 2017.
Ответы@Mail.Ru: Что такое ЦУНАМИ?
<img src=»//foto.mail.ru/mail/katenok77.7/_answers/i-378.jpg» > Цуна́ми (яп. 津波, в переводе с японского — «большая волна» ) — это длинные волны, возникающие из-за сотрясения воды в океане или другом водоёме. Причиной большинства цунами являются сильные подводные землетрясения. В результате землетрясения распространяется несколько волн, и первая не всегда самая сильная. Более 80 % цунами возникают на периферии Тихого океана27 августа 1883 года огромное извержение вулкана практически уничтожило остров Кракатау. Этот взрыв образовал волны высотой несколько десятков метров, которые стерли с лица Земли сотни деревень. Волны пронеслись по океану со скоростью до 1300 км/час, достигнув берегов Австралии и Калифорнии за многие тысячи километров от места катастрофы! В 1946 году в районе Алеутских островов произошло подводное землетрясение. Образовавшаяся гигантская волна менее чем за пять часов, преодолев почти 4 тыс. км, обрушилась на Гавайи. Она разрушила дома и мосты на расстоянии сотен метров от берега. Погибло 170 человек. Такие волны называются приливными. Они совершенно не похожи на обычные волны в море или у берега и не зависят ни от ветра, ни от течения. Ученые дали этим волнам японское название «цунами» . Различные катаклизмы, происходящие на морском дне, создают приливные волны, или цунами. Как правило, это подводные землетрясения. В результате подводного землетрясения образуется ударная волна, которая распространяется в воде наподобие того, как звук распространяется в воздухе. И действительно, такая ударная волна в воде имеет скорость звука. Если в этом районе окажется корабль, он ощутит на себе силу ударной волны, а это примерно то же самое, что и столкновение корабля со скалой! При подводном землетрясении происходит перемещение морского дна по вертикали и горизонтали. Вот эти перемещения дна и ударная волна вызывают приливные волны. На поверхности воды может внезапно образоваться огромная воронка или наоборот — возникает столб воды. Появляется приливная волна, которая с огромной скоростью движется по морской поверхности. Когда приливная волна приближается к берегу, ее первым признаком, как ни странно, может быть незначительное повышение уровня моря. Затем на несколько минут море отступает, как при отливе. Может обнажиться обширный участок морского дна. И затем появляется всеразрушающая приливная волна!
Гиганские волны (шторм )
это взрыв в море
Цунами это огромных размеров волна, с разрушительной силой! Достигает 20 30 м в высоту!
Цунами — морские гравитационные волны большой длины (150-300 км), возникающие главным образом в результате сдвига вверх или вниз протяженных участков морского дна при подводных и прибрежных землетрясениях. Скорость распространения цунами составляет от 50 до 1000 км/ч и прямо зависит от глубины океана. Высота волны в области возникновения составляет 0.1-5 м., у побережий — 10-50 м. Цунами производят опустошительные разрушения на суше. япон.Цунами
Явление, которое мы называем цунами — это серия распространяющихся в океане волн с очень большой длиной и периодом. Эти волны образуются вследствие землетрясений, происходящих под дном океана или вблизи его побережья. Цунами могут образоваться при извержении подводных вулканов, а также при обвалах больших участков суши в океан. Цунами перемещается в глубоководных районах океана со скоростью свыше 1000 км/час, расстояние между последовательными гребнями (ложбинами) волн может быть более нескольких сотен километров, поэтому в открытом море они не ощущаются людьми, находящимися на борту судов. При выходе цунами на мелководные участки побережья скорость волн резко уменьшается, а высота их значительно увеличивается. Именно на этих мелководных участках цунами становится опасным для жизни и материальных ценностей, именно на этих участках его высота может стать более 30-50 метров, а разрушительная сила волн — огромной. Особенно опасно цунами для населенных пунктов и сооружений, находящихся в вершине заливов и бухт, широко открытых к океану и клинообразно сужающихся в сторону суши. Сюда, как в воронку, цунами нагоняет большую массу воды, в конце бухты она выплескивается на берег, затопляет устья и долины рек на 2-3 км от моря. Цунами — довольно редкое явление. На Тихоокеанском побережье Камчатки и Курильских островов цунами возникают с максимальным подъемом уровня воды свыше 23 м 1 раз в 100-200 лет, с подъемом от 8 до 23 м 1 раз в 50-100 лет, с подъемом от 3 до 8 м 1 раз в 20-30 лет, с подъемом 1-3 м 1 раз в 10 лет. Подобно тому как имеется шкала интенсивности землетрясений, существует и шкала интенсивности цунами I — цунами очень слабое, волна отмечается лишь мареографами. II — cлабое цунами, может затопить плоское побережье. III — цунами средней силы. Плоские побережья затоплены, легкие суда могут быть выброшены на берег. В воронкообразных устьях рек течение может временно меняться на обратное. Портовые сооружения подвергаются небольшому ущербу. IV — сильное цунами, побережье затоплено, прибрежные постройки и сооружения повреждены. Крупные парусные суда и небольшие моторные выброшены на сушу, а затем снова смыты в море. Берега засорены обломками и мусором. V — очень сильное цунами, приморские территории затоплены. Волноломы и молы сильно повреждены. И более крупные суда выброшены на берег. Ущерб велик и во внутренних частях побережья. В устьях рек высокие штормовые нагоны. Человеческие жертвы. VI — катастрофическое цунами, полное опустошение побережья и приморских территорий. Суша затоплена на значительное пространство в глубь от берега моря. Самые крупные суда повреждены. Много жертв. <img src=»//foto.mail.ru/mail/anna1980_80/_answers/i-444.jpg» >
Это очень большая волна которая образуется при землетресении в океане
Длинные и высокие волны, порождаемые мощным воздействием на всю толщу воды в океане или другом водоеме
Самые большие волны в мире Чем обусловлено появление большинства волн в океанах и морях, о разрушительной энергии волн и о самых гигантских волнах, и больших цунами которые когда-либо видел человек. Самая высокая волна Чаще всего волны порождаются ветром: воздух перемещает поверхностные слои водной толщи с определенной скоростью. Некоторые волны могут разгоняться до 95 км/час, при этом волна может быть длиной до 300 метров, такие волны проходят огромные расстояния по океану, но чаще всего их кинетическая энергия гасится, расходуется еще до того, как они достигают суши. Если же ветер стихает, то и волны становятся мельче, глаже. Образование волн в океане подчиняется определенным закономерностям. Скорость волн может достигать 100 км/ч Высота и длина волны зависит от скорости ветра, от продолжительности его воздействия, от площади охваченной ветром территории. Существует соответствие: наибольшая высота волны составляет одну седьмую часть от ее длины. Например, сильный бриз порождает волны высотой до 3 метров, обширный ураган — в среднем до 20 метров. И это уже по-настоящему чудовищные волны, с ревущими пенными шапками и прочими спецэффектами. Океанские волны могут быть разной высоты Самая высокая обычная волна в 34 метра была отмечена на территории течения Агульяс (Южная Африка) в 1933 году моряками с борта американского судна «Рамапо». Волны такой высоты называют «волнами-убийцами»: в провалах между ними может легко затеряться и погибнуть даже большой корабль. В теории высота нормальных волн может достигать и 60 метров, но таковые пока не были зафиксированы на практике. Гигантские волны-убийцы Помимо обычного ветрового происхождения, существуют и другие механизмы волнообразования. Причиной и эпицентром рождения волны может быть землетрясение, извержение вулкана, резкое изменение береговой линии (оползни), деятельность человека (например, испытание ядерного оружия) и даже падение в океан крупных небесных тел — метеоритов. Самая большая волна Это цунами – серийная волна, которая вызвана каким-либо мощным импульсом. Особенность волн цунами состоит в том, что они довольно длинные, расстояние между гребнями может достигать десятки километров. Поэтому в открытом океане цунами не представляет особой опасности, так как высота волн получается в среднем не более нескольких сантиметров, в рекордных случаях – метра полтора, зато скорость их распространения просто немыслимая, до 800 км / час. С корабля в открытом море они вообще не заметны. Разрушительную силу цунами приобретает, приближаясь к побережью: отражение от берега ведет к сжатию длины волны, а энергия-то никуда не девается. Соответственно, увеличивается ее (волны) амплитуда, то есть, высота. Несложно сделать вывод, что такие волны могут достигать намного большей высоты, чем ветровые волны. Последствия гигантской волны — цунами Самые страшные цунами возникают из-за значительных нарушений рельефа морского дна, например, тектонических разломов или сдвигов, из-за которых миллиарды тонн воды начинают резко перемещаться на десятки тысяч километров со скоростью реактивного самолета. Катастрофы происходят, когда вся эта масса замедляется об берег, и ее колоссальная энергия сначала идет на наращивание высоты, а в итоге обрушивается на сушу всей своей мощью, водяной стеной. Большие цунами особенно опасны на побережье Самые «цунамоопасные» места – заливы с высокими берегами. Это настоящие ловушки для цунами. И самое страшное, что цунами почти всегда приходит внезапно: с виду ситуация на море может быть неотличима от отлива или прилива, обычного шторма, люди не успевают или даже не мыслят эвакуироваться, и вдруг их настигает гигантская волна. Система оповещения мало где разработана. Цунами в Тайланде в 2004 году стали катастрофой Территории с повышенной сейсмической активностью – зоны особого риск
Когда толстый мужик из самолета прыгнул в середину моря
Цуна́ми — длинные и высокие волны, порождаемые мощным воздействием на всю толщу воды в океане или другом водоёме. Цунами, по мнению некоторых специалистов, являются солитонами. Естественным сигналом предупреждения о возможности цунами является землетрясение. Перед началом цунами, как правило, вода отступает далеко от берега, обнажая морское дно на сотни метров и даже несколько километров. Этот отлив может длиться от нескольких минут до получаса. Движение волн может сопровождаться громоподобными звуками, которые слышны до подхода волн цунами. Иногда перед волной цунами происходит подтопление побережья водяным «ковром». Возможно появление трещин в ледяном покрове у берегов. Признаком приближающегося стихийного бедствия может быть изменение обычного поведения животных, которые заранее чувствуют опасности и стремятся переместиться на возвышенные места. Когда поступит сигнал об опасности цунами, реагируйте немедленно. Каждую минуту используйте для обеспечения личной безопасности и защиты окружающих людей. Вы можете располагать временем от нескольких минут до получаса и более, поэтому, если будете действовать спокойно и продуманно, сможете увеличить Ваши шансы уберечься от воздействия цунами. Если находитесь в помещении, немедленно покиньте его, предварительно выключив свет и газ, и переместитесь в безопасное место. Кратчайшим путем переберитесь на возвышенное место высотой 30-40 м над уровнем моря или быстро переместитесь на 2-3 км от берега. Если Вы едете на автомобиле, следуйте в безопасном направлении, забрав по пути следования бегущих людей. При невозможности укрыться в безопасном месте, когда времени на перемещении не осталось, поднимитесь как можно выше на верхние этажи здания, закройте окна и двери. Если есть возможность, переберитесь в наиболее надежное здание. Если Вы будете укрываться в помещении, помните, что наиболее безопасными зонами считаются места у капитальных внутренних стен, у колонн, в углах, образованных капитальными стенами. Уберите от себя рядом стоящие предметы, которые могут упасть, особенно стеклянные. Если Вы все-таки оказались вне помещения, постарайтесь забраться на дерево или укрыться в месте, которое менее подвержено удару. В крайнем случае, необходимо зацепиться за ствол дерева или прочную преграду. Оказавшись в воде, освободитесь от обуви и намокшей одежды, попробуйте зацепиться за плавающие на воде предметы. Будьте внимательны, так как волна может нести с собой крупные предметы и их обломки. После прихода первой волны подготовьтесь к встрече со второй и последующими волнами, а если есть возможность, покиньте опасный район. При необходимости окажите первую медицинскую помощь пострадавшим. Ждите сигнал отбоя тревоги. На прежнее место возвращайтесь после того, как убедитесь, что на море в течение двух-трех часов не было высоких волн. Входя в дом, проверьте его прочность, сохранность окон и дверей. Убедитесь, что нет трещин в стенах и перекрытии, нет подмыва фундаментов. Внимательно проверьте наличие утечек газа в помещениях, состояние электроосвещения. Сообщите в комиссию по чрезвычайным ситуациям о состоянии Вашего дома. Активно включайтесь в команду по проведению спасательных и других неотложных работ в поврежденных зданиях, розыску пострадавших и оказанию им необходимой помощи.
это когда на город идет волна !
Это когда надо валить из города.
<a rel=»nofollow» href=»http://lasawon.ru/3Jv0″ target=»_blank»>http://lasawon.ru/3Jv0</a>
Цуна́ми — длинные и высокие волны, порождаемые мощным воздействием на всю толщу воды в океане или другом водоёме. Цунами, по мнению некоторых специалистов, являются солитонами. Естественным сигналом предупреждения о возможности цунами является землетрясение. Перед началом цунами, как правило, вода отступает далеко от берега, обнажая морское дно на сотни метров и даже несколько километров. Этот отлив может длиться от нескольких минут до получаса. Движение волн может сопровождаться громоподобными звуками, которые слышны до подхода волн цунами. Иногда перед волной цунами происходит подтопление побережья водяным «ковром». Возможно появление трещин в ледяном покрове у берегов. Признаком приближающегося стихийного бедствия может быть изменение обычного поведения животных, которые заранее чувствуют опасности и стремятся переместиться на возвышенные места. Когда поступит сигнал об опасности цунами, реагируйте немедленно. Каждую минуту используйте для обеспечения личной безопасности и защиты окружающих людей. Вы можете располагать временем от нескольких минут до получаса и более, поэтому, если будете действовать спокойно и продуманно, сможете увеличить Ваши шансы уберечься от воздействия цунами. Если находитесь в помещении, немедленно покиньте его, предварительно выключив свет и газ, и переместитесь в безопасное место. Кратчайшим путем переберитесь на возвышенное место высотой 30-40 м над уровнем моря или быстро переместитесь на 2-3 км от берега. Если Вы едете на автомобиле, следуйте в безопасном направлении, забрав по пути следования бегущих людей. При невозможности укрыться в безопасном месте, когда времени на перемещении не осталось, поднимитесь как можно выше на верхние этажи здания, закройте окна и двери. Если есть возможность, переберитесь в наиболее надежное здание. Если Вы будете укрываться в помещении, помните, что наиболее безопасными зонами считаются места у капитальных внутренних стен, у колонн, в углах, образованных капитальными стенами. Уберите от себя рядом стоящие предметы, которые могут упасть, особенно стеклянные. Если Вы все-таки оказались вне помещения, постарайтесь забраться на дерево или укрыться в месте, которое менее подвержено удару. В крайнем случае, необходимо зацепиться за ствол дерева или прочную преграду. Оказавшись в воде, освободитесь от обуви и намокшей одежды, попробуйте зацепиться за плавающие на воде предметы. Будьте внимательны, так как волна может нести с собой крупные предметы и их обломки. После прихода первой волны подготовьтесь к встрече со второй и последующими волнами, а если есть возможность, покиньте опасный район. При необходимости окажите первую медицинскую помощь пострадавшим. Ждите сигнал отбоя тревоги. На прежнее место возвращайтесь после того, как убедитесь, что на море в течение двух-трех часов не было высоких волн. Входя в дом, проверьте его прочность, сохранность окон и дверей. Убедитесь, что нет трещин в стенах и перекрытии, нет подмыва фундаментов. Внимательно проверьте наличие утечек газа в помещениях, состояние электроосвещения. Сообщите в комиссию по чрезвычайным ситуациям о состоянии Вашего дома. Активно включайтесь в команду по проведению спасательных и других неотложных работ в поврежденных зданиях, розыску пострадавших и оказанию им необходимой помощи.
Цуна́ми — длинные и высокие волны, порождаемые мощным воздействием на всю толщу воды в океане или другом водоёме. Цунами, по мнению некоторых специалистов, являются солитонами. Естественным сигналом предупреждения о возможности цунами является землетрясение. Перед началом цунами, как правило, вода отступает далеко от берега, обнажая морское дно на сотни метров и даже несколько километров. Этот отлив может длиться от нескольких минут до получаса. Движение волн может сопровождаться громоподобными звуками, которые слышны до подхода волн цунами. Иногда перед волной цунами происходит подтопление побережья водяным «ковром». Возможно появление трещин в ледяном покрове у берегов. Признаком приближающегося стихийного бедствия может быть изменение обычного поведения животных, которые заранее чувствуют опасности и стремятся переместиться на возвышенные места. Когда поступит сигнал об опасности цунами, реагируйте немедленно. Каждую минуту используйте для обеспечения личной безопасности и защиты окружающих людей. Вы можете располагать временем от нескольких минут до получаса и более, поэтому, если будете действовать спокойно и продуманно, сможете увеличить Ваши шансы уберечься от воздействия цунами. Если находитесь в помещении, немедленно покиньте его, предварительно выключив свет и газ, и переместитесь в безопасное место. Кратчайшим путем переберитесь на возвышенное место высотой 30-40 м над уровнем моря или быстро переместитесь на 2-3 км от берега. Если Вы едете на автомобиле, следуйте в безопасном направлении, забрав по пути следования бегущих людей. При невозможности укрыться в безопасном месте, когда времени на перемещении не осталось, поднимитесь как можно выше на верхние этажи здания, закройте окна и двери. Если есть возможность, переберитесь в наиболее надежное здание. Если Вы будете укрываться в помещении, помните, что наиболее безопасными зонами считаются места у капитальных внутренних стен, у колонн, в углах, образованных капитальными стенами. Уберите от себя рядом стоящие предметы, которые могут упасть, особенно стеклянные. Если Вы все-таки оказались вне помещения, постарайтесь забраться на дерево или укрыться в месте, которое менее подвержено удару. В крайнем случае, необходимо зацепиться за ствол дерева или прочную преграду. Оказавшись в воде, освободитесь от обуви и намокшей одежды, попробуйте зацепиться за плавающие на воде предметы. Будьте внимательны, так как волна может нести с собой крупные предметы и их обломки. После прихода первой волны подготовьтесь к встрече со второй и последующими волнами, а если есть возможность, покиньте опасный район. При необходимости окажите первую медицинскую помощь пострадавшим. Ждите сигнал отбоя тревоги. На прежнее место возвращайтесь после того, как убедитесь, что на море в течени