Как расширяется вселенная – Пять вопросов о расширении Вселенной, которые вы стеснялись задать (6 фото)

Расширение Вселенной — Википедия

Расширение Вселенной — явление, состоящее в почти однородном и изотропном[1] расширении космического пространства в масштабах всей Вселенной, выводимое через наблюдаемое с Земли космологическое красное смещение[2].

Экспериментально расширение Вселенной подтверждается выполнением закона Хаббла, а также уменьшением светимости экстремально удалённых «стандартных свеч» (сверхновых типа Ia). Согласно теории Большого взрыва, Вселенная расширяется из начального сверхплотного и сверхгорячего состояния. Является ли это исходное состояние сингулярным (как предсказывает классическая теория гравитации — общая теория относительности) или нет — активно дебатируемый вопрос, разрешить который надеются разработкой квантовой теории гравитации.

Теоретически явление было предсказано и обосновано А. Фридманом на раннем этапе разработки общей теорией относительности из общефилософских соображений об однородности и изотропности Вселенной.

Космологические параметры по данным WMAP и Planck
WMAP[3]Planck[4]
Возраст Вселенной t0, млрд лет13,75±0,1313.81±0.06
H0, (км/с)/Мпк71,0±2,567,4±1,4
Плотность барионной материи Ωbh2 0,0226±0.00060,0221 ± 0,0003
Плотность тёмной материи Ωсh2 0,111 ± 0,0060,120 ± 0,003
Общая плотность Ωt1,08+0,09
-0.07
1,0 ±0,02
Плотность барионной материи Ωb0,045±0,003
Плотность тёмной энергии ΩΛ0,73±0,030,69±0,02
Плотность тёмной материи Ωc0,22±0,03

Расширение Вселенной в различных моделях[править | править код]

Метрическое расширение пространства является увеличением расстояния между двумя отдалёнными частями Вселенной с течением времени. Метрическое расширение является ключевым элементом космологии Большого Взрыва и математически моделируется с помощью метрики Фридмана — Леметра — Робертсона — Уокера (FLRW). Эта модель действует в современную эпоху только на больших масштабах (примерно масштабах скоплений галактик и выше). На меньших масштабах материальные объекты связаны друг с другом силой гравитационного притяжения, и такие связанные скопления объектов не расширяются.

В конце 1990-х годов было обнаружено, что в удалённых галактиках, расстояние до которых было определено по закону Хаббла, сверхновые типа Ia имеют яркость ниже той, которая им полагается. Иными словами, расстояние до этих галактик, вычисленное по методу «стандартных свеч» (сверхновых Ia), оказывается больше расстояния, вычисленного на основании ранее установленного значения параметра Хаббла (за это открытие Сол Перлмуттер, Брайан П. Шмидт и Адам Рисс получили премию Шоу по астрономии за 2006 год, Нобелевскую премию по физике за 2011 год и Премию по фундаментальной физике Юрия Мильнера в 2015 году). Был сделан вывод, что Вселенная не просто расширяется, она расширяется с ускорением.

Ранее существовавшие космологические модели предполагали, что расширение Вселенной замедляется. Они исходили из предположения, что основную часть массы Вселенной составляет материя — как видимая, так и невидимая (тёмная материя). На основании новых наблюдений, свидетельствующих об ускорении расширения, было найдено, что во Вселенной существует ранее неизвестная энергия с отрицательным давлением (см. уравнения состояния). Её назвали «тёмной энергией».

По имеющимся оценкам, ускоряющееся расширение Вселенной началось приблизительно 5 миллиардов лет назад. Предполагается, что до этого расширение замедлялось благодаря гравитационному действию тёмной материи и барионной материи. Плотность барионной материи в расширяющейся Вселенной уменьшается быстрее, чем плотность тёмной энергии. В конце концов, тёмная энергия начинает преобладать. Например, когда объём Вселенной удваивается, плотность барионной материи уменьшается вдвое, а плотность тёмной энергии остаётся почти неизменной (или точно неизменной — в варианте с космологической константой).

Если ускоряющееся расширение Вселенной будет продолжаться бесконечно, то в результате галактики за пределами нашего Сверхскопления галактик рано или поздно выйдут за горизонт событий и станут для нас невидимыми, поскольку их относительная скорость превысит скорость света. Это не является нарушением специальной теории относительности. На самом деле невозможно даже определить «относительную скорость» в искривлённом пространстве-времени. Относительная скорость имеет смысл и может быть определена только в плоском пространстве-времени, или на достаточно малом (стремящемся к нулю) участке искривлённого пространства-времени. Любая форма коммуникации далее пределов горизонта событий становится невозможной, и всякий контакт между объектами теряется. Земля, Солнечная система, наша Галактика, и наше Сверхскопление будут видны друг другу и в принципе достижимы путём космических полётов, в то время как вся остальная Вселенная исчезнет вдали. Со временем наше Сверхскопление придёт в состояние тепловой смерти, то есть осуществится сценарий, предполагавшийся для предыдущей, плоской модели Вселенной с преобладанием материи.

Существуют и более экзотические гипотезы о будущем Вселенной. Одна из них предполагает, что фантомная энергия приведёт к т. н. «расходящемуся» расширению. Это подразумевает, что расширяющая сила действия тёмной энергии продолжит неограниченно увеличиваться, пока не превзойдёт все остальные силы во Вселенной. По этому сценарию, тёмная энергия со временем разорвёт все гравитационно связанные структуры Вселенной, затем превзойдёт силы электростатических и внутриядерных взаимодействий, разорвёт атомы, ядра и нуклоны и уничтожит Вселенную в Большом разрыве.

С другой стороны, тёмная энергия может со временем рассеяться или даже сменить отталкивающее действие на притягивающее. В этом случае гравитация возобладает и приведёт Вселенную к «Большому хлопку». Некоторые сценарии предполагают «циклическую модель» Вселенной. Хотя эти гипотезы пока не подтверждаются наблюдениями, они и не отвергаются полностью. Решающую роль в установлении конечной судьбы Вселенной (развивающейся по теории Большого взрыва) должны сыграть точные измерения темпа ускорения.

Почему вселенная расширяется? И как долго?

Наша вселенная расширяется. С ускорением. Каждую секунду пространство между космическими галактиками растет все быстрее и быстрее.

Какова будет конечная судьба Вселенной — вечное расширение или великий крах? Ключом к этому является понимание «темной энергии» — самой большой загадки современной астрофизики, которая также является причиной ускорения, которое началось внезапно 4-5 миллиардов лет назад.

Только в конце двадцатого века ученые обнаружили, что вселенная расширяется с ускорением. Его начало — около 5 миллиардов лет назад, относительно скоро до возраста вселенной, которой почти 14 миллиардов лет. Это оказался огромным сюрпризом для всех ученых, потому что, согласно тогдашним теориям, вселенная должна замедляться, а не ускорять свое расширение.

На самом деле, сам Эйнштейн столкнулся с проблемами, связанными с идеей об изменяющейся, а не статичной вселенной. Великий ученый считает, что почти до самого конца своей жизни вселенная должна быть статичной и неизменной — и при этом она не должна расширяться или уменьшаться. Именно по этой причине он меняет свои уравнения, которые говорят об обратном, и добавляет к ним так называемые космологическая постоянная, которая препятствует расширению пространства.

Когда в 1929 году американский астроном Эдвин Хаббл открыл так называемую красное смещение галактик, становится ясно, что кажется, что все другие галактики в космосе «убегают» от нас.

Когда автомобиль движется к нам, его звук меняется, а когда галактика движется, ее «цвет» меняется, и мы можем определить, приближается ли он к Земле или удаляется от нее.

Хаббл наблюдает за смещением видимого света галактик в красный спектр, что означает, что объект удаляется, и мы можем измерить его скорость. Это так называемый. закон Хаббла, и скорость расширения сегодня известна как постоянная Хаббла (около 72 км в секунду на мегапарсек, равная 1 парсек = 31 триллион километров или 206 265 раз расстояния между Землей и Солнцем, и 1 мегапарсек = 1 миллион парсек) ,

Поэтому единственно возможное объяснение состоит в том, что пространство вселенной расширяется и не может быть статичным. И хотя эксперименты Хаббла являются эмпирическим доказательством, математическое изложение этого факта было сделано еще раньше бельгийским математиком Жоржем Ломмером в 1927 году. Перед лицом этого доказательства Эйнштейн отказался от космологической постоянной и даже назвал ее «самой большой ошибкой в его карьера «.

Сегодня, однако, совершенно неожиданно, что нам снова нужна космологическая константа, хотя и немного другим способом.

Теория большого взрыва и эволюция вселенной

Как только станет ясно, что галактики убегают друг от друга, логично предположить, что в начале все они были сгруппированы в одном месте. Более того, мы можем предположить, что в самом начале вселенная была сжата в одну взорвавшуюся точку. Так рождается теория большого взрыва.

Сегодня это одна из широко признанных и проверенных теорий развития вселенной. Причина в ее огромной объяснительной силе. Действительно, если все когда-либо было собрано в одной точке, то это состояние должно быть с огромной температурой и невероятной плотностью. Моделирование таких условий является одной из задач современных ускорителей частиц, таких как Большой адронный ускоритель в ЦЕРНе. Объясняя появление химических элементов в результате Большого взрыва, Первичный нуклеосинтез, также является одним из больших успехов теоретической ядерной физики.

Но это остается проблемой. Предполагая, что был начальный Большой взрыв, который «раздувает вселенную» и обеспечивает сравнительную однородность пространства в большом масштабе, и в любом направлении, которое так, и мы наблюдаем это, если будет какой-либо энергетический след этого первичного колоссального взрыва, который мы можем видеть? Оказывается, есть доказательство.

Это так называемый. космическое микроволновое фоновое излучение, также называемое остаточным или реликтовым излучением. Идея состоит в том, что, когда вселенная очень молода, она находится в чрезвычайно плотном и горячем состоянии плазмы и непрозрачна. Во время процесса расширения его температура снижается, и он начинает охлаждаться. При более низкой температуре могут образовываться стабильные атомы, но они не могут поглощать тепло, и Вселенная становится прозрачной (примерно через 300-400 лет после взрыва). Это время, когда испускаются первые фотоны, которые даже сегодня циркулируют в пространстве и могут быть обнаружены нами. Поэтому их излучение называется реликтовым, т.е. Остаточное. Этот момент — также самая далекая вещь, которую мы можем видеть с нашими телескопами.

В 1964 году два радиоастронома — Арно Пензиас и Роберт Уилсон — экспериментально обнаружили эффект реликтового фона — устойчивый микроволновый «шум» с температурой около 2,7 Кельвина, равномерный в любой точке неба без связи со звездой или другим объектом. Это голос космоса, остаток взрыва, породившего нашу вселенную. Это окончательное доказательство справедливости теории Большого взрыва, за которую два радиоастронома получили Нобелевскую премию в 1978 году.

Космическое микроволновое фоновое излучение

Помимо неоспоримого доказательства Большого взрыва, реликтовое излучение дало нам еще кое-что. Зонд WMAP (микроволновый зонд анизотропии Уилкинсона), запущенный в 2001 году, отображает космическое фоновое излучение в наблюдаемой Вселенной. Различный цвет рисунка соответствует небольшой разнице в температуре излучения. В результате излучение является однородным с точностью до пяти знаков после запятой. Однако там, после пятого знака, что-то интересное и удивительное — темная материя.

Он взаимодействует только гравитационно, и мы не можем установить или доказать это каким-либо другим способом. По оценкам, его содержание составляет около 25 процентов от общей плотности вселенной, в то время как обычная, наша материя, составляет всего 4-5 процентов.

Хотя темную материю нельзя наблюдать непосредственно, ее присутствие было предложено Фрицем Цвицким в 1934 году для объяснения так называемой » «Проблема с недостающей массой» .

Оказывается, что галактики не могут быть стабильными и вращаться, как они это делают, если не существует огромного количества скрытой массы, удерживающей звезды в соединенной галактике. Результаты исследования космического фонового излучения однозначно подтверждают наличие большого количества темной материи.

Результаты WMAP также можно использовать для проверки геометрии юниверса — закрытой, открытой или плоской.

Сегодня мы знаем, что Вселенная плоская с точностью до 0,5 процента. Это хорошо, но это также означает, что в зависимости от плотности вещества и энергии во вселенной у нас может быть другой конец эволюции пространства. Если общая плотность (так называемый космологический параметр Омеги) превышает критическую массу, Вселенная может сжаться в так называемую Большой крах, прямо противоположный большому взрыву. Или, наоборот, мы можем расширяться до бесконечности, пока сама вселенная не станет довольно холодной, пустынной и относительно скучной. Это теория Большого охлаждения.

Темная энергия и конечная судьба Вселенной

На самом деле, как мы можем знать, что произошло с пространством Вселенной, и что будет с ним в будущем? Поскольку скорость света ограничена, чем дальше находится объект, тем дольше свет должен будет добраться до нас. Например, путь света от нашего Солнца до Земли составляет чуть более 8 минут. Наблюдая с помощью наших телескопов далеких звезд, мы на самом деле видим прошлое, когда ловим свет, который давно покинул их и только сейчас достигает нас. Тогда, если мы знаем, что наблюдаем два одинаковых объекта, но на разном расстоянии, мы можем вывести изменение пространства между ними во времени.

Объекты, которые относительно «идентичны» в космосе, известны как стандартные свечи.

Это могут быть переменные звезды особого типа, так называемые Цефеиды. Они пульсируют одинаково, т.е. излучать один и тот же световой поток через равные промежутки времени. Другими такими объектами, которые являются еще более точными показателями расстояний, являются вспышки сверхновых типа IA. Они представляют собой термоядерное разрушение звезды (фактически пары звезд). Из-за особенностей процесса всегда выделяется одна и та же энергия. Вот почему сверхновые IA — наши самые известные стандартные свечи.

В частности, в 1997 году исследования сверхновых показали, что Вселенная расширяется с ускорением. Поскольку энергия вспышки всегда одна и та же, разница, которую мы наблюдаем (более тусклые или более яркие вспышки), обусловлена ​​исключительно разницей в динамике пространства. Таким образом, мы можем получить карту эволюции пространства во времени. Оказывается, что в первые 8-9 миллиардов лет после взрыва Вселенная замедляется, как и следовало ожидать, а затем внезапно начинает расширяться с ускорением!

Это огромный парадокс, и причина ускоренного расширения пока неизвестна. Чтобы объяснить это, ученые вновь вводят космологическую постоянную Эйнштейна в уравнения, но с противоположным знаком — то есть он действует как антигравитация и целесообразно расширяет пространство.

Тем не менее, похоже, что Эйнштейн не так сильно ошибался.

Сегодня мы знаем, что темная энергия занимает около 70 процентов от общей плотности энергии Вселенной. Мы понятия не имеем, почему он начинает свое действие или какова его природа. Вполне возможно, что его сила будет уменьшаться или увеличиваться со временем.

В зависимости от этого, есть два сценария конца нашей вселенной. Если космологическая постоянная продолжает работать и расти, мы будем расширяться вечно. Если, наоборот, его сила уменьшается и гравитация побеждает, тогда концом нашего космоса может стать Великое Падение. Тогда, почему бы и нет, возможно, новая вселенная родится в новом космическом Большом Взрыве. Но пока это просто загадки, ответы на которые скоро будут раскрыты.

Расширение Вселенной | Журнал Популярная Механика

Всего лишь сто лет назад ученые обнаружили, что наше Мироздание стремительно увеличивается в размерах.

В 1870 году английский математик Уильям Клиффорд пришел к очень глубокой мысли, что пространство может быть искривлено, причем неодинаково в разных точках, и что со временем его кривизна может изменяться. Он даже допускал, что такие изменения как-то связаны с движением материи. Обе эти идеи спустя много лет легли в основу общей теории относительности. Сам Клиффорд до этого не дожил — он умер от туберкулеза в возрасте 34 лет за 11 дней до рождения Альберта Эйнштейна.

Красное смещение

Первые сведения о расширении Вселенной предоставила астроспектрография. В 1886 году английский астроном Уильям Хаггинс заметил, что длины волн звездного света несколько сдвинуты по сравнению с земными спектрами тех же элементов. Исходя из формулы оптической версии эффекта Допплера, выведенной в 1848 году французским физиком Арманом Физо, можно вычислить величину радиальной скорости звезды. Подобные наблюдения позволяют отследить движение космического объекта.

Еще сто лет назад представления о Вселенной базировались на ньютоновской механике и евклидовой геометрии. Даже немногие ученые, такие как Лобачевский и Гаусс, допускавшие (только как гипотезу!) физическую реальность неевклидовой геометрии, считали космическое пространство вечным и неизменным. Из-за расширения Вселенной судить о расстоянии до далеких галактик непросто. Свет, дошедший через 13 млрд лет от галактики A1689-zD1 в 3,35 млрд световых лет от нас (А), «краснеет» и ослабевает по мере преодоления расширяющегося пространства, а сама галактика удаляется (B). Он будет нести информацию о дистанции в красном смещении (13 млрд св. лет), в угловом размере (3,5 млрд св. лет), в интенсивности (263 млрд св. лет), тогда как реальное расстояние составляет 30 млрд св. лет.

Четверть века спустя эту возможность по‑новому использовал сотрудник обсерватории во Флагстаффе в штате Аризона Весто Слайфер, который с 1912 года изучал спектры спиральных туманностей на 24-дюймовом телескопе с хорошим спектрографом. Для получения качественного снимка одну и ту же фотопластинку экспонировали по нескольку ночей, поэтому проект двигался медленно. С сентября по декабрь 1913 года Слайфер занимался туманностью Андромеды и с помощью формулы Допплера-Физо пришел к выводу, что она ежесекундно приближается к Земле на 300 км.

В 1917 году он опубликовал данные о радиальных скоростях 25 туманностей, которые показывали значительную асимметрию их направлений. Только четыре туманности приближались к Солнцу, остальные убегали (и некоторые очень быстро).

Посмотрите на очень детальное изображение Луны

Слайфер не стремился к славе и не пропагандировал свои результаты. Поэтому они стали известны в астрономических кругах, лишь когда на них обратил внимание знаменитый британский астрофизик Артур Эддингтон.

Посмотрите на очень детальное изображение Луны

В 1924 году он опубликовал монографию по теории относительности, куда включил перечень найденных Слайфером радиальных скоростей 41 туманности. Там присутствовала все та же четверка туманностей с голубым смещением, в то время как у остальных 37 спектральные линии были сдвинуты в красную сторону. Их радиальные скорости варьировали в пределах 150 — 1800 км/с и в среднем в 25 раз превышали известные к тому времени скорости звезд Млечного Пути. Это наводило на мысль, что туманности участвуют в иных движениях, нежели «классические» светила.

Космические острова

В начале 1920-х годов большинство астрономов полагало, что спиральные туманности расположены на периферии Млечного Пути, а за его пределами уже нет ничего, кроме пустого темного пространства. Правда, еще в XVIII веке некоторые ученые видели в туманностях гигантские звездные скопления (Иммануил Кант назвал их островными вселенными). Однако эта гипотеза не пользовалась популярностью, поскольку достоверно определить расстояния до туманностей никак не получалось.

Эту задачу решил Эдвин Хаббл, работавший на 100-дюймовом телескопе-рефлекторе калифорнийской обсерватории Маунт-Вилсон. В 1923—1924 годах он обнаружил, что туманность Андромеды состоит из множества светящихся объектов, среди которых есть переменные звезды семейства цефеид. Тогда уже было известно, что период изменения их видимого блеска связан с абсолютной светимостью, и поэтому цефеиды пригодны для калибровки космических дистанций. С их помощью Хаббл оценил расстояние до Андромеды в 285 000 парсек (по современным данным, оно составляет 800 000 парсек). Диаметр Млечного Пути тогда полагали приблизительно равным 100 000 парсек (в действительности он втрое меньше). Отсюда следовало, что Андромеду и Млечный Путь необходимо считать независимыми звездными скоплениями. Вскоре Хаббл идентифицировал еще две самостоятельные галактики, чем окончательно подтвердил гипотезу «островных вселенных».

Посмотрите на очень детальное изображение Луны

Справедливости ради стоит отметить, что за два года до Хаббла расстояние до Андромеды вычислил эстонский астроном Эрнст Опик, чей результат — 450000 парсек — был ближе к правильному. Однако он использовал ряд теоретических соображений, которые не были так же убедительны, как прямые наблюдения Хаббла.

К 1926 году Хаббл провел статистический анализ наблюдений четырех сотен «внегалактических туманностей» (этим термином он пользовался еще долго, избегая называть их галактиками) и предложил формулу, позволяющую связать расстояние до туманности с ее видимой яркостью. Несмотря на огромные погрешности этого метода, новые данные подтверждали, что туманности распределены в пространстве более или менее равномерно и находятся далеко за границами Млечного Пути. Теперь уже не приходилось сомневаться, что космос не замыкается на нашей Галактике и ее ближайших соседях.

Модельеры космоса

Эддингтон заинтересовался результатами Слайфера еще до окончательного выяснения природы спиральных туманностей. К этому времени уже существовала космологическая модель, в определенном смысле предсказывавшая эффект, выявленный Слайфером. Эддингтон много размышлял о ней и, естественно, не упустил случая придать наблюдениям аризонского астронома космологическое звучание.

Современная теоретическая космология началась в 1917 году двумя революционными статьями, представившими модели Вселенной, построенные на основе общей теории относительности. Одну из них написал сам Эйнштейн, другую — голландский астроном Виллем де Ситтер.


Законы Хаббла

Посмотрите на очень детальное изображение Луны

Эдвин Хаббл эмпирически выявил примерную пропорциональность красных смещений и галактических дистанций, которую он с помощью формулы Допплера-Физо превратил в пропорциональность между скоростями и расстояниями. Так что мы имеем здесь дело с двумя различными закономерностями.
Хаббл не знал, как они связаны друг с другом, но что об этом говорит сегодняшняя наука?
Как показал еще Леметр, линейная корреляция между космологическими (вызванными расширением Вселенной) красными смещениями и дистанциями отнюдь не абсолютна. На практике она хорошо соблюдается лишь для смещений, меньших 0,1. Так что эмпирический закон Хаббла не точный, а приближенный, да и формула Допплера-Физо справедлива только для небольших смещений спектра.
А вот теоретический закон, связывающий радиальную скорость далеких объектов с расстоянием до них (с коэффициентом пропорциональности в виде параметра Хаббла V=Hd), справедлив для любых красных смещений. Однако фигурирующая в нем скорость V — вовсе не скорость физических сигналов или реальных тел в физическом пространстве. Это скорость возрастания дистанций между галактиками и галактическими скоплениями, которое обусловлено расширением Вселенной. Мы бы смогли ее измерить только в том случае, если были бы в состоянии останавливать расширение Вселенной, мгновенно протягивать мерные ленты между галактиками, считывать расстояния между ними и делить их на промежутки времени между измерениями. Естественно, что законы физики этого не позволяют. Поэтому космологи предпочитают использовать параметр Хаббла H в другой формуле, где фигурирует масштабный фактор Вселенной, который как раз и описывает степень ее расширения в различные космические эпохи (поскольку этот параметр изменяется со временем, его современное значение обозначают H0). Вселенная сейчас расширяется с ускорением, так что величина хаббловского параметра возрастает.
Измеряя космологические красные смещения, мы получаем информацию о степени расширения пространства. Свет галактики, пришедший к нам с космологическим красным смещением z, покинул ее, когда все космологические дистанции были в 1+z раз меньшими, нежели в нашу эпоху. Получить об этой галактике дополнительные сведения, такие как ее нынешняя дистанция или скорость удаления от Млечного Пути, можно лишь с помощью конкретной космологической модели. Например, в модели Эйнштейна — де Ситтера галактика с z = 5 отдаляется от нас со скоростью, равной 1,1 с (скорости света). А вот если сделать распространенную ошибку и просто уравнять V/c и z, то эта скорость окажется впятеро больше световой. Расхождение, как видим, нешуточное.
Зависимость скорости далеких объектов от красного смещения согласно СТО, ОТО (зависит от модели и времени, кривая показывает настоящее время и текущую модель). При малых смещениях зависимость линейная.

Эйнштейн в духе времени считал, что Вселенная как целое статична (он пытался сделать ее еще и бесконечной в пространстве, но не смог найти корректные граничные условия для своих уравнений). В итоге он построил модель замкнутой Вселенной, пространство которой обладает постоянной положительной кривизной (и поэтому она имеет постоянный конечный радиус). Время в этой Вселенной, напротив, течет по‑ньютоновски, в одном направлении и с одинаковой скоростью. Пространство-время этой модели искривлено за счет пространственной компоненты, в то время как временная никак не деформирована. Статичность этого мира обеспечивает специальный «вкладыш» в основное уравнение, препятствующий гравитационному схлопыванию и тем самым действующий как вездесущее антигравитационное поле. Его интенсивность пропорциональна особой константе, которую Эйнштейн назвал универсальной (сейчас ее называют космологической постоянной).

Посмотрите на очень детальное изображение Луны Космологическая модель Леметра, описывающая расширение Вселенной, намного опередила свое время. Вселенная Леметра начинается с Большого взрыва, после которого расширение сначала замедляется, а затем начинает ускоряться.

Эйнштейновская модель позволила вычислить размер Вселенной, общее количество материи и даже значение космологической постоянной. Для этого нужна лишь средняя плотность космического вещества, которую, в принципе, можно определить из наблюдений. Не случайно этой моделью восхищался Эддингтон и использовал на практике Хаббл. Однако ее губит неустойчивость, которую Эйнштейн просто не заметил: при малейшем отклонении радиуса от равновесного значения эйнштейновский мир либо расширяется, либо претерпевает гравитационный коллапс. Поэтому к реальной Вселенной такая модель отношения не имеет.

Пустой мир

Де Ситтер тоже построил, как он сам считал, статичный мир постоянной кривизны, но не положительной, а отрицательной. В нем присутствует эйнштейновская космологическая константа, но зато полностью отсутствует материя. При введении пробных частиц сколь угодно малой массы они разбегаются и уходят в бесконечность. Кроме того, время на периферии вселенной де Ситтера течет медленней, нежели в ее центре. Из-за этого с больших расстояний световые волны приходят с красным смещением, даже если их источник неподвижен относительно наблюдателя. Поэтому в 1920-е годы Эддингтон и другие астрономы задались вопросом: не имеет ли модель де Ситтера чего-нибудь общего с реальностью, отраженной в наблюдениях Слайфера?

Посмотрите на очень детальное изображение Луны

Эти подозрения подтвердились, хоть и в ином плане. Статичность вселенной де Ситтера оказалась мнимой, поскольку была связана с неудачным выбором координатной системы. После исправления этой ошибки пространство де Ситтера оказалось плоским, евклидовым, но нестатичным. Благодаря антигравитационной космологической константе оно расширяется, сохраняя при этом нулевую кривизну. Из-за этого расширения длины волн фотонов возрастают, что и влечет за собой предсказанный де Ситтером сдвиг спектральных линий. Стоит отметить, что именно так сегодня объясняют космологическое красное смещение далеких галактик.

От статистики к динамике

История открыто нестатичных космологических теорий начинается с двух работ советского физика Александра Фридмана, опубликованных в немецком журнале Zeitschrift fur Physik в 1922 и 1924 годах. Фридман просчитал модели вселенных с переменной во времени положительной и отрицательной кривизной, которые стали золотым фондом теоретической космологии. Однако современники эти работы почти не заметили (Эйнштейн сначала даже счел первую статью Фридмана математически ошибочной). Сам Фридман полагал, что астрономия еще не обладает арсеналом наблюдений, позволяющим решить, какая из космологических моделей более соответствует реальности, и потому ограничился чистой математикой. Возможно, он действовал бы иначе, если бы ознакомился с результатами Слайфера, однако этого не случилось.

Посмотрите на очень детальное изображение Луны

По-другому мыслил крупнейший космолог первой половины XX века Жорж Леметр. На родине, в Бельгии, он защитил диссертацию по математике, а затем в середине 1920-х изучал астрономию — в Кембридже под руководством Эддингтона и в Гарвардcкой обсерватории у Харлоу Шепли (во время пребывания в США, где он подготовил вторую диссертацию в МIT, он познакомился со Слайфером и Хабблом). Еще в 1925 году Леметру впервые удалось показать, что статичность модели де Ситтера мнимая. По возвращении на родину в качестве профессора Лувенского университета Леметр построил первую модель расширяющейся вселенной, обладающую четким астрономическим обоснованием. Без преувеличения, эта работа стала революционным прорывом в науке о космосе.

Вселенская революция

В своей модели Леметр сохранил космологическую константу с эйнштейновским численным значением. Поэтому его вселенная начинается статичным состоянием, но со временем из-за флуктуаций вступает на путь постоянного расширения с возрастающей скоростью. На этой стадии она сохраняет положительную кривизну, которая уменьшается по мере роста радиуса. Леметр включил в состав своей вселенной не только вещество, но и электромагнитное излучение. Этого не сделали ни Эйнштейн, ни де Ситтер, чьи работы были Леметру известны, ни Фридман, о котором он тогда ничего не знал.


Сопутствующие координаты

Посмотрите на очень детальное изображение Луны

В космологических вычислениях удобно пользоваться сопутствующими координатными системами, которые расширяются в унисон с расширением Вселенной. В идеализированной модели, где галактики и галактические кластеры не участвуют ни в каких собственных движениях, их сопутствующие координаты не меняются. А вот дистанция между двумя объектами в данный момент времени равна их постоянной дистанции в сопутствующих координатах, умноженной на величину масштабного фактора для этого момента. Такую ситуацию легко проиллюстрировать на надувном глобусе: широта и долгота каждой точки не меняются, а расстояние между любой парой точек увеличивается с ростом радиуса.
Использование сопутствующих координат помогает осознать глубокие различия между космологией расширяющейся Вселенной, специальной теорией относительности и ньютоновской физикой. Так, в ньютоновской механике все движения относительны, и абсолютная неподвижность не имеет физического смысла. Напротив, в космологии неподвижность в сопутствующих координатах абсолютна и в принципе может быть подтверждена наблюдениями. Специальная теория относительности описывает процессы в пространстве-времени, из которого можно с помощью преобразований Лоренца бесконечным числом способов вычленять пространственные и временные компоненты. Космологическое пространство-время, напротив, естественно распадается на искривленное расширяющееся пространство и единое космическое время. При этом скорость разбегания далеких галактик может многократно превышать скорость света.

Леметр еще в США предположил, что красные смещения далеких галактик возникают из-за расширения пространства, которое «растягивает» световые волны. Теперь же он доказал это математически. Он также продемонстрировал, что небольшие (много меньшие единицы) красные смещения пропорциональны расстояниям до источника света, причем коэффициент пропорциональности зависит только от времени и несет информацию о текущем темпе расширения Вселенной. Поскольку из формулы Допплера-Физо следовало, что радиальная скорость галактики пропорциональна красному смещению, Леметр пришел к выводу, что эта скорость также пропорциональна ее удаленности. Проанализировав скорости и дистанции 42 галактик из списка Хаббла и приняв во внимание внутригалактическую скорость Солнца, он установил значения коэффициентов пропорциональности.

Незамеченная работа

Свою работу Леметр опубликовал в 1927 году на французском языке в малочитаемом журнале «Анналы Брюссельского научного общества». Считают, что это послужило основной причиной, из-за которой она поначалу осталась практически незамеченной (даже его учителем Эддингтоном). Правда, осенью того же года Леметр смог обсудить свои выводы с Эйнштейном и узнал от него о результатах Фридмана. У создателя ОТО не было технических возражений, однако он решительно не поверил в физическую реальность леметровской модели (подобно тому, как раньше не принял фридмановские выводы).

Посмотрите на очень детальное изображение Луны

Графики Хаббла

Между тем в конце 1920-х годов Хаббл и Хьюмасон выявили линейную корреляцию между расстояниями до 24 галактик и их радиальными скоростями, вычисленными (в основном еще Слайфером) по красным смещениям. Хаббл сделал из этого вывод о прямой пропорциональности радиальной скорости галактики расстоянию до нее. Коэффициент этой пропорциональности сейчас обозначают H0 и называют параметром Хаббла (по последним данным, он немного превышает 70 (км/с)/мегапарсек).

Статья Хаббла с графиком линейной зависимости между галактическими скоростями и дистанциями была опубликована в начале 1929 года. Годом ранее молодой американский математик Хауард Робертсон вслед за Леметром вывел эту зависимость из модели расширяющейся Вселенной, о чем Хаббл, возможно, знал. Однако в его знаменитой статье эта модель ни прямо, ни косвенно не упоминалась. Позднее Хаббл высказывал сомнения, что фигурирующие в его формуле скорости реально описывают движения галактик в космическом пространстве, однако всегда воздерживался от их конкретной интерпретации. Смысл своего открытия он видел в демонстрации пропорциональности галактических расстояний и красных смещений, остальное предоставлял теоретикам. Поэтому при всем уважении к Хабблу считать его первооткрывателем расширения Вселенной нет никаких оснований.

Посмотрите на очень детальное изображение Луны

И все-таки она расширяется!

Тем не менее Хаббл подготовил почву для признания расширения Вселенной и модели Леметра. Уже в 1930 году ей воздали должное такие мэтры космологии, как Эддингтон и де Ситтер; немногим позже ученые заметили и по достоинству оценили работы Фридмана. В 1931 году с подачи Эддингтона Леметр перевел на английский свою статью (с небольшими купюрами) для «Ежемесячных известий Королевского астрономического общества». В этом же году Эйнштейн согласился с выводами Леметра, а годом позже совместно с де Ситтером построил модель расширяющейся Вселенной с плоским пространством и искривленным временем. Эта модель из-за своей простоты долгое время была очень популярна среди космологов.

В том же 1931 году Леметр опубликовал краткое (и без всякой математики) описание еще одной модели Вселенной, объединявшей в себе космологию и квантовую механику. В этой модели начальным моментом выступает взрыв первичного атома (Леметр также называл его квантом), породивший и пространство, и время. Поскольку тяготение тормозит расширение новорожденной Вселенной, его скорость уменьшается — не исключено, что почти до нуля. Позднее Леметр ввел в свою модель космологическую постоянную, заставившую Вселенную со временем перейти в устойчивый режим ускоряющегося расширения. Так что он предвосхитил и идею Большого взрыва, и современные космологические модели, учитывающие присутствие темной энергии. А в 1933 году он отождествил космологическую постоянную с плотностью энергии вакуума, о чем до того никто еще не додумался. Просто удивительно, насколько этот ученый, безусловно достойный титула первооткрывателя расширения Вселенной, опередил свое время!

Статья «Как открывали расширение Вселенной» опубликована в журнале «Популярная механика» (№6, Июнь 2012).

если Вселенная расширяется, почему не расширяемся мы? / Habr


Если Вселенная расширяется, можно понять, почему далёкие галактики удаляются от нас. Но почему не расширяются звёзды, планеты и атомы?

Одним из крупнейших научных сюрпризов XX века стало открытие расширения Вселенной. Удалённые галактики разбегаются от нас и друг от друга быстрее, чем ближе расположенные, будто бы растягивается сама ткань пространства. На крупнейших масштабах плотность материи и энергии Вселенной падали миллиарды лет, и продолжают это делать. А если мы заглянем достаточно далеко, мы увидим галактики, разлетающиеся так быстро, что ничто, что мы могли бы отправить к ним сегодня, не сможет их догнать – не хватит даже скорости света. Но нет ли в этом парадокса? Именно об этом спрашивает читатель:

Если вселенная расширяется быстрее скорости света, почему это не влияет на нашу солнечную систему и расстояния от Солнца до планет? И почему относительное расстояние между звёздами нашей галактики не увеличивается… или оно увеличивается?

Мысль читателя верна, и Солнечная система, расстояния между планетами и звёздами не увеличиваются при расширении Вселенной. Так что же расширяется в расширяющейся Вселенной? Давайте разбираться.


Первоначальное представление о пространстве, выдвинутое Ньютоном, как о фиксированном, абсолютном и неизменном. Это была сцена, на которой массы могли существовать и притягиваться

Когда Ньютон впервые задумался о Вселенной, он представлял себе пространство в виде сетки. Это была абсолютная, фиксированная сущность, наполненная массами, гравитационно притягивающимися друг к другу. Но когда появился Эйнштейн, он понял, что эта воображаемая сетка не фиксирована, не абсолютна, и не похожа на представление Ньютона. Эта сетка похожа на ткань, и эта ткань искривлена, искажена и меняется со временем из-за присутствия материи и энергии. Более того, материя и энергия определяют её искривление.


Искривление пространства-времени гравитационными массами согласно ОТО

Но если бы в вашем пространстве-времени был только набор различных масс, они неизбежно бы схлопнулись и сформировали чёрную дыру. Эйнштейну эта идея не нравилась, поэтому он добавил «поправку» в виде космологической константы. Если существует этот дополнительный член уравнения – дополнительная энергия, пронизывающая пустое пространство – она может отталкивать все эти массы и удерживать Вселенную в неподвижности. Она предотвратит гравитационный коллапс. Добавив её, Эйнштейн позволял Вселенной существовать в почти неподвижном состоянии вечно.

Но не всех привлекала идея статичной Вселенной. Одно из первых решений получил физик по имени Александр Фридман. Он показал, что если не добавлять эту космологическую константу, и заполнить Вселенную энергией – материей, излучением, пылью, жидкостями, и т.д. – то существует два класса решений: один для сжимающейся Вселенной, а другой для расширяющейся.


Модель расширения Вселенной в виде «хлеба с изюмом», где относительные расстояния увеличиваются при расширении пространства (теста)

Математика даёт вам возможные решения, но вам нужно посмотреть на физическую Вселенную, чтобы узнать, какое из них её описывает. Это произошло в 1920-х годах благодаря работам Эдвина Хаббла. Хаббл первым открыл, что можно измерить характеристики отдельных звёзд в других галактиках и определить расстояние до них. Скомбинировав эти измерения с работами Весто Слайфера, показавшего, что у этих объектов происходит сдвиг атомного спектра, он получил удивительный результат.


График видимой скорости расширения (ось y) в зависимости от расстояния (ось x) соответствует Вселенной, быстро расширявшейся в прошлом, но до сих пор расширяющейся и сегодня. Это современная версия работы Хаббла, расширенная на расстояния в тысячи раз большие первоначальных

Либо вся теория относительности неверна, мы находимся в центре Вселенной и всё симметрично убегает от нас, либо теория относительности верна, Фридман прав, и чем дальше от нас галактика, тем быстрее она в среднем удаляется от нас. Одним движением теория расширяющейся Вселенной перешла от простой идеи к лидирующему описанию Вселенной.

Расширение работает немного контринтуитивно. Выглядит всё так, будто ткань пространства со временем растягивается, и все объекты в этом пространстве растаскиваются друг от друга. Чем дальше объект отстоит от другого, тем больше между ними растяжения, тем быстрее они удаляются друг от друга. Если бы у нас была однородно заполненная материей Вселенная, то материя просто становилась бы менее плотной и каждый её участок со временем отдалялся бы от всех остальных.


Холодные флуктуации (синий) реликтового излучения по сути не холоднее, а просто представляют участки, в которых имеется большее гравитационное притяжение из-за большей плотности материи. Горячие участки (красный) горячее, потому что излучение в этих участках живёт в более мелком гравитационном колодце. Со временем более плотные участки превратятся в звёзды, галактики и скопления с большей вероятностью, а менее плотные – с меньшей.

Но Вселенная не является идеально равномерной. В ней есть участки повышенной плотности, типа планет, звёзд, галактик, скоплений галактик. В ней есть участки пониженной плотности, такие, как огромные космические войды, где практически не встретить массивных объектов. Тому причиной наличие других физических явлений, кроме расширения Вселенной. На мелких масштабах, размером с животных и меньше, преобладают электромагнетизм и ядерные силы. На крупных масштабах – планеты, солнечные системы и галактики – преобладает гравитационное воздействие. На крупнейших масштабах – размерах, сравнимых со Вселенной – главная борьба разворачивается между расширением Вселенной и гравитационным притяжением всей имеющейся в ней материи и энергии.


На крупнейших масштабах Вселенная расширяется, и галактики удаляются друг от друга. На маленьких масштабах гравитация пересиливает расширение, что приводит к формированию звёзд, галактик и их скоплений

На крупнейших масштабах расширение побеждает. Самые удалённые галактики удаляются так быстро, что никакие сигналы, которые мы могли бы отправить к ним, даже со скоростью света, никогда до них не дойдут. Сверхскопления Вселенной – длинные, нитевидные структуры, вдоль которых выстраиваются галактики, тянущиеся на миллиарды световых лет – растягиваются и раздвигаются из-за расширения Вселенной. В относительно короткие сроки они исчезнут. И даже ближайшее к Млечному Пути скопление галактик, скопление Девы, находящееся всего в 50 миллионах световых лет от нас, не притянет нас к себе. Несмотря на гравитационное притяжение, более чем в тысячу раз превышающее наше собственное, расширение Вселенной растащит нас в стороны.


Крупный набор из многих тысяч галактик составляет наше ближайшее окружение в пределах 100 000 000 световых лет. Скопление Девы останется гравитационно связанным, но Млечный Путь продолжит со временем отдаляться от него

Но есть и масштабы поменьше, где расширение было побеждено – по крайней мере, локально. Скопление Девы останется связанным гравитационно. Млечный Путь и вся местная группа галактик останется связанной, и в итоге сольётся под действием гравитации. Земля так и будет двигаться по орбите вокруг Солнца на том же расстоянии, Земля останется того же размера, и атомы, из которых состоит всё, расширяться не будут. Почему? Потому, что расширение Вселенной работает только там, где другие взаимодействия – гравитационное, электромагнитное, ядерное – его не преодолели. Если какая-то сила способна удерживать объект в целости, даже расширение Вселенной не сможет его изменить.


Орбиты планет в системе TRAPPIST-1 не меняются с расширением Вселенной благодаря связующей силе гравитации, преодолевающей все последствия расширения

Этому есть неочевидная причина, связанная с тем, что расширение – это не взаимодействие, а больше скорость. Пространство расширяется на всех масштабах, но расширение воздействует только на все объекты совокупно. Между двумя точками пространство будет расширяться с определённой скоростью, но если эта скорость меньше скорости убегания между двумя объектами – если между ними действует связующая их сила – тогда расстояние между ними увеличиваться не будет. Нет увеличения расстояния, нет эффекта от расширения. В любой момент расширение преодолевается с запасом, поэтому оно никогда не приобретёт суммарный эффект, наблюдаемый между несвязанными между собой объектами. В результате стабильные, связные объекты могут выжить без изменений в расширяющейся Вселенной вечно.


Размеры стабильных, удерживаемых вместе объектов, будь они связаны гравитацией, электромагнетизмом или другой силой, не изменятся с расширением Вселенной. Если вам удастся преодолеть космическое расширение, вы останетесь связным навечно.

Пока Вселенная обладает измеренными нами свойствами, так всё и будет продолжаться. Тёмная энергия может существовать и заставлять удалённые галактики двигаться от нас с ускорением, но действие расширения на фиксированном расстоянии меняться не будет. Только в варианте Большого Разрыва – на который не указывают свидетельства – это заключение может измениться.

Ткань пространства может расширяться повсюду, но это не оказывает измеряемого эффекта на объекты. Если какая-то сила удерживает вас в связном состоянии, расширяющаяся Вселенная не будет на вас влиять. Только на самых крупных масштабах, на которых все силы, связующие объекты, слишком слабы, чтобы победить скорость Хаббла, и происходит это расширение. Как однажды сказал физик Ричард Прайс: «Если ваша талия расширяется, вы не можете винить в этом расширение Вселенной».

Итан Сигель – астрофизик, популяризатор науки, автор блога Starts With A Bang! Написал книги «За пределами галактики» [Beyond The Galaxy], и «Трекнология: наука Звёздного пути» [Treknology].

Ускоряющаяся Вселенная — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 30 декабря 2017; проверки требуют 3 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 30 декабря 2017; проверки требуют 3 правки.

Ускорение расширения Вселенной — обнаруженное в конце 1990-х годов уменьшение светимости экстремально удалённых «стандартных свечей» (сверхновых типа Ia), интерпретированное как ускорение расширения Вселенной. Расстояния до других галактик определяются измерением их красного смещения. По закону Хаббла, величина красного смещения света удалённых галактик прямо пропорциональна расстоянию до этих галактик. Соотношение между расстоянием и величиной красного смещения называется параметром Хаббла (или, не совсем точно, постоянной Хаббла).

Однако, само значение параметра Хаббла требуется сначала каким-нибудь способом установить, а для этого нужно измерить значения красного смещения для галактик, расстояния до которых уже вычислены другими методами. Для этого в астрономии применяются «стандартные свечи», то есть объекты, светимость которых известна. Лучшим типом «стандартной свечи» для космологических наблюдений являются сверхновые звёзды типа Ia. Они обладают очень высокой яркостью и вспыхивают только тогда, когда масса старой звезды типа «белый карлик» достигает предела Чандрасекара, значение которого известно с высокой точностью. Следовательно, все вспыхивающие сверхновые типа Ia, находящиеся на одинаковом расстоянии, должны иметь почти одинаковую наблюдаемую яркость; при этом желательно делать поправки на вращение и состав исходной звезды. Сравнивая наблюдаемую яркость сверхновых в разных галактиках, можно определить расстояния до этих галактик.

В 1998 году, при наблюдениях сверхновых типа Ia, было обнаружено, что в удалённых галактиках, расстояние до которых было определено по закону Хаббла, сверхновые типа Ia имеют яркость ниже той, которая им полагается[1][2]. Иными словами, расстояние до этих галактик, вычисленное по методу «стандартных свечей» (сверхновых Ia), оказывается больше расстояния, вычисленного на основании ранее установленного значения параметра Хаббла. Был сделан вывод, что Вселенная не просто расширяется, она расширяется с ускорением.

За это открытие Сол Перлмуттер, Брайан П. Шмидт и Адам Рисс получили премию Шао по астрономии за 2006 год и Нобелевскую премию по физике за 2011 год.
Затем эти наблюдения были подкреплены другими источниками: измерениями реликтового излучения, гравитационного линзирования, нуклеосинтеза Большого Взрыва[источник не указан 1083 дня]. Все полученные данные хорошо вписываются в лямбда-CDM модель.

Ранее существовавшие космологические модели предполагали, что расширение Вселенной замедляется. Они исходили из предположения, что основную часть массы Вселенной составляет материя — как видимая, так и невидимая (тёмная материя). На основании новых наблюдений, свидетельствующих об ускорении расширения, было постулировано существование неизвестного вида энергии с отрицательным давлением (см. уравнения состояния). Её назвали «тёмной энергией».

Представление об ускоренном расширении Вселенной влечёт ряд нетривиальных следствий, касающихся характера её эволюции. В частности, при некоторых не слишком ограничительных предположениях доказана принципиальная невозможность достижения в ускоренно расширяющейся Вселенной термодинамического равновесия[3].

Совершенно другой вид мира будет иметь место, если отказаться от гипотезы Большого взрыва, а руководствоваться космологией черной дыры. Тогда ускорение будет естественным падением в бесконечно расширяющееся пространство внутри черной дыры. Реликтовое излучение появляется в какой то момент после прохождение сферы Шварцшильда, и вообще всё что раньше отсчитывалось от момента Большого взрыва, надо отсчитывать от этого момента. Разница принципиальная в том, что в системе отсчета, которая падает в черную дыру имеет место и история до этого момента.

  • Jones, Mark H.; Robert J. Lambourne (2004). An Introduction to Galaxies and Cosmology. Cambridge University Press. p. 244. ISBN 978-0-521-83738-5.
  • Блинников С.И., Долгов А.Д. Космологическое ускорение // УФН. — 2019. — Т. 189. — С. 561–602. — DOI:10.3367/UFNr.2018.10.038469.

5 вопросов о расширении Вселенной, которые вы стеснялись задать / Habr


Взгляд на чрезвычайно отдалённую часть Вселенной открывает нам галактики, движущиеся от нас с огромными скоростями. На таких расстояниях галактик видно больше, они меньше по размеру, не такие развитые и удаляются с большими красными смещениями, чем те, что расположены недалеко

Когда вы смотрите на удалённую Вселенную, вы повсюду видите галактики – во всех направлениях, на все миллионы и миллиарды световых лет. Человечеству доступны для наблюдения примерно два триллиона галактик, а общая сумма всего, что есть во Вселенной, гораздо больше и невероятнее, чем большинство из нас может себе представить. Один из наиболее сбивающих с толку фактов состоит в том, что все видимые нами галактики в среднем подчиняются одному правилу: чем дальше они от нас, тем быстрее, по-видимому, они движутся в сторону от нас. Это открытие, сделанное Эдвином Хабблом со своими помощниками в 1920-х, привело нас к картине расширяющейся Вселенной. Но что означает, что Вселенная расширяется? Наука знает это, а теперь будете знать и вы!


Чем дальше мы смотрим, тем более древнюю и неразвитую Вселенную видим. Но это только если Общая теория относительности применима ко Вселенной и управляет её расширением.

1) Во что расширяется Вселенная? Это один из вопросов, звучащих разумно, поскольку всё остальное, что может расширяться, состоит из материи и существует в рамках пространства и времени Вселенной. Но сама Вселенная – это и есть пространство и время, и оно содержит всю имеющуюся материю и энергию. Говоря о «расширении Вселенной» мы имеем в виду, что расширяется пространство, и мы видим, что отдельные галактики и их скопления разлетаются друг от друга. Лучшая из визуализаций этого процесса – это тесто с изюминками, поднимающееся в результате выпекания в печи.


Модель «хлеба с изюмом» расширения Вселенной, в которой относительные расстояния увеличиваются при расширении пространства (теста).

Тесто – ткань пространства, изюминки – связанные структуры (галактики или группы/скопления галактик), и с точки зрения любой изюминки все остальные двигаются от неё, и чем дальше изюминка, тем быстрее она убегает. Только в случае Вселенной нет никакой печки и воздуха снаружи теста; есть только тесто (пространство) и изюминки (материя).


Красное смещение вызывается не движением галактик от нас – красное смещение света, путешествующего от удалённых точек пространства к нам, происходит из-за растяжения пространства между нами и галактиками

2) Откуда нам знать, что расширяется ткань пространства – может, это просто галактики движутся с разными скоростями? Если объекты движутся от вас по всем направлениям, то, возможно, пространство между вами и ими расширяется; но это лишь одна из возможностей. Также звучит разумным, что вы могли оказаться в центре взрыва, и многие объекты просто оказались дальше от вас и двигаются быстрее сегодня, поскольку приобрели больше энергии во время взрыва. Если бы это было так, то выделялись бы два свидетельства этого:

  1. На больших расстояниях галактик с высокими скоростями было бы меньше, поскольку они бы разлетались в стороны в пространстве с течением времени.
  2. Соотношение красного смещения и дальности на больших расстояниях имело бы весьма определённую форму, отличающуюся от того случая, когда расширяется ткань пространства.


Разница между объяснением на основе простого движения (пунктир) и предсказаниями ОТО (сплошная) для расстояний в расширяющейся Вселенной. Нашим наблюдениям однозначно соответствуют предсказания ОТО.

На больших расстояниях плотность галактик оказывается выше, чем поблизости от нас. Это совпадает с картиной, в которой расширяется пространство, поскольку заглядывать вдаль – это всё равно, что заглядывать в прошлое, где расширение было не таким сильным. Мы также видим, что отношение красного смещения к расстоянию у далёких галактик совпадает с картиной расширения ткани пространства, и вовсе не совпадает со случаем, когда галактики просто движутся от нас. На этот вопрос наука даёт ответ двумя очень разными способами, и оба ответа поддерживают вариант расширяющейся Вселенной.


График видимой скорости расширения (ось y) в зависимости от расстояния (ось x) совпадает со Вселенной, быстрее расширявшейся в прошлом, но до сих пор расширяющейся сегодня. Это современная версия наблюдения, расширяющая дистанции в тысячи раз по сравнению с тем, что делал Хаббл. Отметьте, что точки не лежат на прямой, что говорит об изменении скорости расширения со временем

3) Всегда ли Вселенная расширялась с одной скоростью? Мы называем эту скорость постоянной Хаббла, но она постоянна по всему пространству, а не по всему времени. Вселенная сейчас, сегодня, расширяется медленнее, чем это было в прошлом [Вот тут Итан объясняет, почему расширение замедляется, а галактики разлетаются всё быстрее / прим. перев.]. Когда мы говорим о скорости расширения, имеется в виду скорость на единицу расстояния: сегодня это порядка 70 км/с/Мпк (километров в секунду на мегапарсек; мегапарсек – 3 260 000 световых лет). Но скорость расширения зависит от плотности всего, что есть во Вселенной, включая и материю с излучением. С расширением Вселенной материя и излучение внутри неё становятся менее плотными, и с падением плотности материи и излучения падает и скорость расширения. Вселенная в прошлом расширялась быстрее, и замедляется со времён горячего Большого взрыва. Постоянная Хаббла названа так не очень точно; её надо бы назвать параметром Хаббла.


Варианты отдалённой судьбы Вселенной предлагают несколько возможностей, но если тёмная энергия действительно является постоянной, о чём говорят наши данные, то Вселенная будет продолжать следовать красной кривой

4) Будет ли Вселенная расширяться вечно, или она когда-нибудь остановится, или даже сожмётся обратно? Множество поколений этот вопрос был святым Граалем космологии и астрофизики, и на него можно было ответить, только определив как скорость расширения Вселенной, так и все присутствующие в ней типы и количества энергии. Теперь мы успешно измерили, сколько нормальной материи, излучения, нейтрино, тёмной материи и тёмной энергии присутствует в ней, а также скорость расширения Вселенной. На основании законов физики и прошлых событий весьма вероятным кажется то, что Вселенная будет расширяться вечно. Хотя эта вероятность не равна 100%; если что-то, к примеру, тёмная материя, будет вести себя в будущем по-другому, не так, как в прошлом или сегодня, все наши выводы придётся пересмотреть.

5) Есть ли галактики, убегающие от нас быстрее скорости света, и не запрещено ли это? С нашей точки зрения пространство между нами и любой удалённой точкой расширяется. Чем дальше что-то находится, тем быстрее оно удаляется от нас. Даже если бы скорость расширения была крохотной, достаточно далёкий объект в итоге преодолел бы порог любой конечной скорости, поскольку скорость расширения (скорость на единицу расстояния), помноженная на достаточно большое расстояние, даст вам любое значение скорости. Но ОТО этого не запрещает! Закон, запрещающий движение быстрее света, применим только к движениям объектов в пространстве, а не к расширению самого пространства. На самом деле сами галактики двигаются со скоростями порядка сотен или тысяч км/с, что гораздо меньше, чем 300 000 км/с, ограничение скорости, устанавливаемое светом. Убегание и красное смещение вызвано расширением Вселенной, а не истинным движением галактики.


Внутри наблюдаемой Вселенной (жёлтый круг) есть примерно 2 триллиона галактик. До галактик, находящихся на расстоянии большем, чем треть пути от нас до границы, никогда нельзя будет добраться из-за расширения Вселенной, поэтому объём, открытый для изучения человеком, составляет всего 3% от наблюдаемой Вселенной

Расширение Вселенной – обязательное следствие наличия материи и энергии, заполняющей пространство-время, подчиняющееся ОТО. Пока есть материя, есть гравитационное притяжение, поэтому либо гравитация выигрывает и всё сжимается, либо гравитация проигрывает и выигрывает расширение. Нет никакого центра расширения, нет ничего за пределами пространства, куда расширялась бы Вселенная; расширение испытывает сама ткань Вселенной, везде и постоянно. И что самое обидное, даже если бы мы сегодня покинули Землю и отправились бы в путь со скоростью света, нам оказались бы доступными лишь 3% галактик из всей наблюдаемой Вселенной; 97% из них уже за пределами наших возможностей. Вселенная может быть сложным местом, но, по крайней мере, теперь вы знаете ответы на пять из наиболее часто запутывающих всех вопросов!

Вселенная — Википедия

Вселе́нная — не имеющее строгого определения понятие в астрономии и философии[комм. 1]. Оно делится на две принципиально отличающиеся сущности: умозрительную (философскую) и материальную, доступную наблюдениям в настоящее время или в обозримом будущем. Если автор различает эти сущности, то, следуя традиции, первую называют Вселенной, а вторую — астрономической Вселенной или Метагалактикой (в последнее время этот термин практически вышел из употребления).

В историческом плане для обозначения «всего пространства» использовались различные слова, включая эквиваленты и варианты из различных языков, такие как «космос», «мир»[1], «небесная сфера». Использовался также термин «макрокосмос»[2], хотя он предназначен для определения систем большого масштаба, включая их подсистемы и части. Аналогично, слово «микрокосмос» используется для обозначения систем малого масштаба.

Любое исследование, любое наблюдение, будь то наблюдение физика за тем, как раскалывается ядро атома, ребёнка за кошкой или астронома, ведущего наблюдения за отдалённой галактикой, — всё это наблюдение за Вселенной, вернее, за отдельными её частями. Эти части служат предметом изучения отдельных наук, а Вселенной в максимально больших масштабах, и даже Вселенной как единым целым занимаются астрономия и космология; при этом под Вселенной понимается или область мира, охваченная наблюдениями и космическими экспериментами, или объект космологических экстраполяций — физическая Вселенная как целое[3].

Предметом статьи являются знания о наблюдаемой Вселенной как о едином целом: наблюденияПерейти к разделу «#Наблюдения», их теоретическая интерпретацияПерейти к разделу «#Теоретические модели» и история становленияПерейти к разделу «#История открытия Вселенной».

Среди однозначно интерпретируемых фактов относительно свойств Вселенной приведём здесь следующие:

В основу теоретических объясненийПерейти к разделу «#Теоретические модели» и описаний этих явлений положен космологический принцип, суть которого в том, что наблюдатели, независимо от места и направления наблюдения, в среднем обнаруживают одну и ту же картину. Сами теории стремятся объяснить и описать происхождение химических элементовПерейти к разделу «#Теория Большого Взрыва (модель горячей Вселенной)», ход развитияПерейти к разделу «#Модель расширяющейся Вселенной» и причину расширенияПерейти к разделу «#Инфляционная модель», возникновение крупномасштабной структурыПерейти к разделу «#Теория эволюции крупномасштабных структур».

Первый значительный толчок в сторону современных представлений о Вселенной совершил Коперник.Перейти к разделу «#Научная революция (XVII в)» Второй по величине вклад внесли Кеплер и Ньютон.Перейти к разделу «#XVIII—XIX вв.» Но поистине революционные изменения в наших представлениях о Вселенной произошли лишь в XX веке.Перейти к разделу «#XX век»

Этимология

Русское слово «Вселенная» является заимствованием из ст.‑слав. въселенаꙗ[4], что является калькой древнегреческого слова οἰκουμένη[5], от глагола οἰκέω «населяю, обитаю» и в первом значении имело смысл лишь обитаемой части мира. Поэтому русское слово «Вселенная» родственно существительному «вселение» и лишь созвучно определительному местоимению «всё». Самое общее определение для «Вселенной» среди древнегреческих философов, начиная с пифагорейцев, было τὸ πᾶν (всё), включавшее в себя как всю материю (τὸ ὅλον), так и весь космос (τὸ κενόν)[6].

Облик Вселенной

Представляя Вселенную как весь окружающий мир, мы сразу делаем её уникальной и единственной. И вместе с этим лишаем себя возможности описать её в терминах классической механики: из-за своей уникальности Вселенная ни с чем не может взаимодействовать, она — система систем, и поэтому в её отношении теряют свой смысл такие понятия, как масса, форма, размер. Вместо этого приходится прибегать к языку термодинамики, употребляя такие понятия как плотность, давление, температура, химический состав.Перейти к разделу «#Теоретические модели»

Перейти к разделу «#Теоретические модели»

Расширение Вселенной

Однако Вселенная мало похожа на обычный газ. Уже на самых крупных масштабах мы сталкиваемся с расширением Вселенной и реликтовым фоном. Природа первого явления — гравитационное взаимодействие всех существующих объектов. Именно его развитием определяется будущее Вселенной. Второе же явление — это наследство ранних эпох, когда свет горячего Большого взрыва практически перестал взаимодействовать с материей, отделился от неё. Сейчас, из-за расширения Вселенной, из видимого диапазона большинство излучённых тогда фотонов перешли в микроволновой радиодиапазон.

Иерархия масштабов во Вселенной

При переходе к масштабам меньше 100 Мпк обнаруживается чёткая ячеистая структура. Внутри ячеек пустота — войды. А стенки образованы из сверхскоплений галактик. Эти сверхскопления — верхний уровень целой иерархии, затем идут скопления галактик, потом локальные группы галактик, а самый нижний уровень (масштаб 5—200 кпк) — это огромное многообразие самых различных объектов. Конечно, все они — галактики, но все они различны: это и линзовидные, неправильные, эллиптические, спиральные, с полярным кольцами, с активными ядрами и т. д.

Из них отдельно стоит упомянуть квазары, отличающихся очень высокой светимостью и настолько малым угловым размером, что в течение нескольких лет после открытия их не удавалось отличить от «точечных источников» — звёзд. Болометрическая светимость квазаров может достигать 1046 — 1047 эрг/с[10].

Переходя к составу галактики мы обнаруживаем: тёмную материю, космические лучи, межзвёздный газ, шаровые скопления, рассеянные скопления, двойные звёзды, звёздные системы большей кратности, сверхмассивные чёрные дыры и чёрные дыры звёздной массы, и, наконец, одиночные звёзды разного населения.

Их индивидуальная эволюция и взаимодействие друг с другом порождает множество явлений. Так предполагается, что источником энергии у упомянутых уже квазаров служит аккреция межзвёздного газа на сверхмассивную центральную чёрную дыру.

Отдельно стоит упомянуть и о гамма-всплесках — это внезапные кратковременные локализуемые повышения интенсивности космического гамма-излучения с энергией в десятки и сотни кэВ[11]. Из оценок расстояний до гамма-всплесков можно сделать вывод, что излучаемая ими энергия в гамма-диапазоне достигает 1050 эрг. Для сравнения, светимость всей галактики в этом же диапазоне составляет «всего» 1038 эрг/c. Такие яркие вспышки видны из самых далёких уголков Вселенной, так у GRB 090423 красное смещение z = 8,2.

Сложнейшим комплексом, включающим в себя множество процессов, является эволюция галактики[12]:

В центре диаграммы представлены важные этапы эволюции одной звезды: от её формирования до смерти. Их ход малозависим от того, что происходит со всей галактикой в целом. Однако общее число вновь образующихся звёзд и их параметры подвержены значительному внешнему влиянию. Процессы, масштабы которых сравнимы или больше размера галактики (на диаграмме это все остальные, не вошедшие в центральную область), меняют морфологическую структуру, темп звездообразования, а значит, и скорость химической эволюции, спектр галактики и так далее.

Наблюдения

Описанное выше многообразие порождает целый спектр задач наблюдательного характера. В одну группу можно включить изучение отдельных феноменов и объектов, а это:

  1. Феномен расширения. А для этого нужно измерять расстояния и красные смещения и как можно более далёких объектов. При ближайшем рассмотрении это выливается в целый комплекс задач, называемый шкалой расстояний.Перейти к разделу «#Шкала расстояний и космологическое красное смещение»
  2. Реликтовый фон.Перейти к разделу «#Изучение реликтового фона»
  3. Отдельные удалённые объекты, как квазары и гамма-всплески.Перейти к разделу «#Наблюдение далёких объектов»

Далёкие и старые объекты излучают мало света и необходимы гигантские телескопы, такие как обсерватория Кека, VLT, БТА, «Хаббл» и строящиеся E-ELT и «Джеймс Уэбб». Кроме того, для выполнения первой задачи необходимы и специализированные средства — такие, как Hipparcos и Gaia.

Как было сказано, излучение реликтового лежит в микроволновом диапазоне длин волн, следовательно, для его изучения необходимы радионаблюдения и, желательно, космическими телескопами, такими как WMAP и «Планк».

Уникальные особенности гамма-всплесков требуют не только гамма-лабораторий на орбите, наподобие SWIFT, но и необычных телескопов — робот-телескопов — чьё поле зрения больше, чем у вышеупомянутых инструментов SDSS, и способных наблюдать в автоматическом режиме. Примерами таких систем может служить телескопы российской сети «Мастер» и российско-итальянский проект Tortora.

Предыдущие задачи — это работа по отдельным объектам. Совсем иной подход требуется для:

  1. Изучения крупномасштабной структуры Вселенной.Перейти к разделу «#Изучение крупномасштабной структуры»
  2. Изучение эволюцию галактик и процессов её составляющиеПерейти к разделу «#Изучение эволюции Вселенной и её крупномасштабной структуры». Таким образом нужны наблюдения как можно более старых объектов и как можно в большем числе.

С одной стороны необходимы массовые, обзорные наблюдения. Это вынуждает использовать телескопы с широким полем, например, такие, как в проекте SDSS. С другой стороны требуется детализация, на порядки превышающая надобности большинства задач предыдущей группы. А это возможно только с помощью РСДБ-наблюдений, с базой в диаметр Земли, или ещё больше как эксперименте «Радиоастрон».

Отдельно стоит выделить поиск реликтовых нейтрино. Для её решения необходимо задействовать специальные телескопы — нейтринные телескопы и нейтринные детекторы, — такие как Баксанский нейтринный телескоп, Байкальский подводный, IceCube, KATRIN.

Одно изучение гамма-всплесков, да реликтового фона свидетельствует о том, что только оптическим участком спектра тут не обойтись. Однако атмосфера Земли имеет всего два окна прозрачности: в радио- и оптическом диапазоне, и поэтому без космических обсерваторий не обойтись. Из ныне действующих в пример здесь приведём Chandra, Integral, XMM-Newton, Гершель. В разработке находятся «Спектр-УФ», IXO, «Спектр-РГ», Astrosat и многие другие.

Шкала расстояний и космологическое красное смещение

Измерение расстояния в астрономии — многоступенчатый процесс. И основная сложность заключается в том, что наилучшие точности у разных методах достигаются на разных масштабах. Поэтому для измерений всё более и более далёких объектов используется всё более и более длинная цепочка методов, каждый из которых опирается на результаты предыдущего.

В основании всех эти цепочек лежит метод тригонометрического параллакса — базовый, единственный, где расстояние измеряется геометрически, с минимальным привлечением допущений и эмпирических закономерностей. Прочие методы, в большинстве своём, для измерения расстояния используют стандартную свечу — источник с известной светимостью. И расстояние до него можно вычислить[13]:

D2=L4πF,{\displaystyle D^{2}={\frac {L}{4\pi F}},}

где D — искомое расстояние, L — светимость, а F — измеренный световой поток.

Метод тригонометрического параллакса
{\displaystyle D^{2}={\frac {L}{4\pi F}},} Схема возникновения годичного параллакса

Параллакс — это угол, возникающий благодаря проекции источника на небесную сферу. Различают два вида параллакса: годичный и групповой[14].

Годичный параллакс — угол, под которым был бы виден средний радиус земной орбиты из центра масс звезды. Из-за движения Земли по орбите видимое положение любой звезды на небесной сфере постоянно сдвигается — звезда описывает эллипс, большая полуось которого оказывается равной годичному параллаксу. По известному параллаксу из законов евклидовой геометрии расстояние от центра земной орбиты до звезды можно найти как[14]:

D=2R2sin⁡α/2≈2Rα,{\displaystyle D={\frac {2R}{2\sin \alpha /2}}\approx {\frac {2R}{\alpha }},}

где D — искомое расстояние, R — радиус земной орбиты, а приближённое равенство записано для малого угла (в радианах). Данная формула хорошо демонстрирует основную трудность этого метода: с увеличением расстояния значение параллакса убывает по гиперболе, и поэтому измерение расстояний до далёких звёзд сопряжено со значительными техническими трудностями.

Суть группового параллакса состоит в следующем: если некое звёздное скопление имеет заметную скорость относительно Земли, то по законам проекции видимые направления движения его членов будут сходиться в одной точке, называемой радиантом скопления. Положение радианта определяется из собственных движений звёзд и смещения их спектральных линий, возникшего из-за эффекта Доплера. Тогда расстояние до скопления находится из следующего соотношения[15]:

D=Vrtg(λ)4,738μ,{\displaystyle D={\frac {V_{r}\mathrm {tg} (\lambda )}{4,738\mu }},}

где μ{\displaystyle \mu } и Vr{\displaystyle V_{r}} — соответственно угловая (в секундах дуги в год) и лучевая (в км/с) скорость звезды скопления, λ{\displaystyle \lambda } — угол между прямыми Солнце—звезда и звезда—радиант, а D{\displaystyle D} — расстояние, выраженное в парсеках. Только Гиады имеют заметный групповой параллакс, но до запуска спутника Hipparcos только таким способом можно откалибровать шкалу расстояний для старых объектов[14].

Метод определения расстояния по цефеидам и звёздам типа RR Лиры

На цефеидах и звёздах типа RR Лиры единая шкала расстояний расходится на две ветви — шкалу расстояний для молодых объектов и для старых[14]. Цефеиды расположены, в основном, в областях недавнего звездообразования и поэтому являются молодыми объектами. Переменные типа RR Лиры тяготеют к старым системам, например, особенно их много в шаровых звёздных скоплениях в гало нашей Галактики.

Оба типа звёзд являются переменными, но если цефеиды — недавно образовавшиеся объекты, то звёзды типа RR Лиры сошли с главной последовательности — гиганты спектральных классов A—F, расположенные, в основном, на горизонтальной ветви диаграммы «цвет-величина» для шаровых скоплений. Однако, способы их использования как стандартных свеч различны:

  • Для цефеид существует хорошая зависимость «период пульсации — абсолютная звёздная величина». Скорее всего, это связано с тем, что массы цефеид различны.
  • Для звёзд RR Лиры средняя абсолютная звёздная величина примерно одинакова и составляет MRR≈0,78m{\displaystyle M_{RR}\approx 0,78^{m}}[14].

Определение данным методом расстояний сопряжено с рядом трудностей:

  1. Необходимо выделить отдельные звёзды. В пределах Млечного Пути это не составляет особого труда, но чем больше расстояние, тем меньше угол, разделяющий звёзды.
  2. Необходимо учитывать поглощение света пылью и неоднородность её распределения в пространстве.

Кроме того, для цефеид остаётся серьёзной проблемой точное определение нуль-пункта зависимости «период пульсации — светимость». На протяжении XX века его значение постоянно менялось, а значит, менялась и оценка расстояния, получаемая подобным способом. Светимость звёзд типа RR Лиры, хотя и почти постоянна, но всё же зависит от концентрации тяжёлых элементов.

Метод определения расстояния по сверхновым типа Ia
{\displaystyle M_{RR}\approx 0,78^{m}} Кривые блеска различных сверхновых

Вспышка сверхновой — колоссальный взрывной процесс, происходящий по всему телу звезды, при этом количество выделившейся энергии лежит в диапазоне от 1050 — 1051 эрг[16]. А также сверхновые типа Ia имеют одинаковую светимость в максимуме блеска. Вместе это позволяет измерять расстояния до очень далёких галактик.

Именно благодаря им в 1998 году две группы наблюдателей открыли ускорение расширения Вселенной[17]. На сегодняшний день факт ускорения почти не вызывает сомнений, однако, по сверхновым невозможно однозначно определить его величину: всё ещё крайне велики ошибки для больших z[13][18].

Обычно, помимо общих для всех фотометрических методов, к недостаткам и открытым проблемам относят[19]:

  1. Проблема К-поправки. Суть этой проблемы состоит в том, что измеряется не боллометрическая интенсивность (интегрированная по всему спектру), а в определённом спектральном диапазоне приёмника. Это значит, что для источников, имеющие разные красные смещения, измеряется интенсивность в разных спектральных диапазонах. Для учёта этого различия вводится особая поправка, называемая К-поправка.
  2. Форма кривой зависимости расстояния от красного смещения измеряется разными обсерваториями на разных инструментах, что порождает проблемы с калибровками потоков и т. п.
  3. Раньше считалось, что все сверхновые Ia — это взрывающиеся белые карлики в тесной двойной системе, где второй компонент — это красный гигант. Однако появились свидетельства, что по крайне мере часть из них могут возникать в ходе слияния двух белых карликов, а значит этот подкласс уже не подходит для использования в качестве стандартной свечи.
  4. Зависимость светимости сверхновой от химического состава звезды-предшественницы.
Метод определения расстояния по гравитационным линзам
{\displaystyle M_{RR}\approx 0,78^{m}} Геометрия гравитационного линзирования

Проходя около массивного тела, луч света отклоняется. Таким образом, массивное тело способно собирать параллельный пучок света в некотором фокусе, строя изображение, причём их может быть несколько. Это явление называется гравитационным линзированием. Если линзируемый объект — переменный, и наблюдается несколько его изображений, это открывает возможность измерения расстояний, так как между изображениями будут различные временны́е задержки из-за распространения лучей в разных частях гравитационного поля линзы (эффект аналогичен эффекту Шапиро в Солнечной системе)[20].

Если в качестве характерного масштаба для координат изображения ξ{\displaystyle \xi } и источника η{\displaystyle \eta } (см. рисунок) в соответствующих плоскостях взять ξ0=D1{\displaystyle \xi _{0}=D_{1}} и η0=ξ0Ds/D1{\displaystyle \eta _{0}=\xi _{0}D_{s}/D_{1}} (где D{\displaystyle D} — угловое расстояние), тогда можно записывать временно́е запаздывание между изображениями номер i{\displaystyle i} и j{\displaystyle j} следующим образом[20]:

Δt=1cDsDlDls(1+zl)|12((xj−y)2−(xi−y)2)+ψ(xi,y)−ψ(xj,y)|,{\displaystyle \Delta t={\frac {1}{c}}{\frac {D_{s}D_{l}}{D_{ls}}}(1+z_{l})\left|{\frac {1}{2}}((x_{j}-y)^{2}-(x_{i}-y)^{2})+\psi (x_{i},y)-\psi (x_{j},y)\right|,}

где χ=ξ/ξ0{\displaystyle \chi =\xi /\xi _{0}} и y=η/η0{\displaystyle y=\eta /\eta _{0}} — угловые положения источника и изображения соответственно, c{\displaystyle c} — скорость света, z1{\displaystyle z_{1}} — красное смещение линзы, а ψ{\displaystyle \psi } — потенциал отклонения, зависящий от выбора модели. Считается, что в большинстве случаев реальный потенциал линзы хорошо аппроксимируется моделью, в которой вещество распределено радиально симметрично, а потенциал превращается в бесконечность. Тогда время задержки определяется по формуле:

Δt=1cDsDlDls(1+zl)|xi−xj|.{\displaystyle \Delta t={\frac {1}{c}}{\frac {D_{s}D_{l}}{D_{ls}}}(1+z_{l})\left|x_{i}-x_{j}\right|.}

Однако, на практике чувствительность метода к виду потенциала гало галактики существенна. Так, измеренное значение H0{\displaystyle H_{0}} по галактике SBS 1520+530 в зависимости от модели колеблется от 46 до 72 км/(с Мпк)[21].

Метод определения расстояния по красным гигантам

Ярчайшие красные гиганты имеют одинаковую абсолютную звёздную величину −3,0m±0,2m[22], а значит, подходят на роль стандартных свеч. Наблюдательно первым этот эффект обнаружил Сендидж в 1971 году. Предполагается, что эти звёзды либо находятся на верхней точке первого подъёма ветви красных гигантов звёзд малой массы (меньше солнечной), либо лежат на асимптотической ветви гигантов.

Основным достоинством метода является то, что красные гиганты удалены от областей звездообразования и повышенной концентрации пыли, что сильно облегчает учёт поглощения. Их светимость также крайне слабо зависит от металличности как самих звёзд, так и окружающей их среды.
Основная проблема данного метода — выделение красных гигантов из наблюдений звёздного состава галактики. Существует два пути её решения[22]:

  • Классический — метод выделения края изображений. При этом обычно применяют Собелевский фильтр. Начало провала — искомая точка поворота. Иногда вместо собелевского фильтра в качестве аппроксимирующей функции берут гауссиану, а функция выделения края зависит от фотометрических ошибок наблюдений. Однако, по мере ослабления звезды растут и ошибки метода. В итоге предельно измеряемый блеск на две звёздных величины хуже, чем позволяет аппаратура.
  • Второй путь — построение функции светимости методом максимального правдоподобия. Данный способ основывается на том, что функция светимости ветви красных гигантов хорошо аппроксимируется степенной функцией:
    ξ(m)∝10am,{\displaystyle \xi (m)\propto 10^{am},}
где a — коэффициент, близкий к 0,3,

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *