Кто изобрел переменный ток – 10 величайших изобретений Николы Теслы, без которых невозможно представить современность

Война токов — Википедия

Дж. Вестингауз.

Война токов (англ. War of Currents) — противостояние Томаса Эдисона и Николы Теслы (а также Джорджа Вестингауза, поддерживавшего Теслу) в борьбе за использование постоянного и переменного тока соответственно. «Война» продолжалась свыше ста лет с конца 80-х годов XIX века и закончилась в конце ноября 2007 года с окончательным переходом Нью-Йорка с постоянного тока на переменный[1].

Генераторы[править | править код]

Генераторы постоянного тока легко подключаются параллельно, необходимо лишь соблюдать полярность. Чтобы подавать в сеть переменный ток, требуется предварительная синхронизация генератора переменного тока с подключаемой энергосистемой.

Передача энергии на расстояние[править | править код]

При увеличении расстояния повышается суммарное электрическое сопротивление проводов, а также растут потери на их нагрев. При создании электрической линии, рассчитанной на передачу определённой мощности, существенно снизить потери можно либо снижая электрическое сопротивление проводов (делая их толще или изготавливая их из другого материала), либо повышая напряжение (что приводит к уменьшению силы тока). Чтобы вчетверо снизить потери, приходится либо вчетверо снижать сопротивление, либо вдвое повышать напряжение. Передача энергии на большие расстояния экономически оправдана при использовании высокого напряжения.

Поскольку эффективных способов изменять напряжение постоянного тока в те времена не существовало, в электростанциях Эдисона использовалось напряжение, близкое к потребительскому — от 100 до 200 В. Это не позволяло передавать потребителю большие мощности на значительные расстояния. В результате потребители электрической энергии должны быть расположены на расстоянии, не превышающем 1,5 км от электростанции. Ориентир на постоянный ток не позволял построить мощную электростанцию, снабжающую целый регион, равно как и построить ГЭС в подходящем для этого удалённом месте.

Напряжение переменного тока легко изменяется с помощью трансформаторов (КПД до 99%). Это даёт возможность передавать ток по высоковольтным магистральным линиям на большие расстояния (сотни километров), предоставляя потребителю электроэнергию через понижающие трансформаторные подстанции.

Потребители[править | править код]

Изобретённый Эдисоном счётчик электроэнергии, а также выпускавшиеся тогда двигатели работали только на постоянном токе.

Подходящих двигателей переменного тока на момент появления электрических сетей (1880 год) вообще не существовало — лишь в 1888 году Никола Тесла изобрёл асинхронный электродвигатель, что склонило чашу весов на сторону изобретателя и предпринимателя в сфере электроосвещения Вестингауза (основателя компании Вестингауз Электрик Корпорейшн).

Коммутация[править | править код]

Коммутация проводников постоянного тока, находящихся под нагрузкой, требует более сложных переключателей, так как при размыкании цепи постоянного тока возникает более устойчивая электрическая дуга, чем при размыкании цепей переменного тока.

Безопасность[править | править код]

Переменный ток быстрее приводит к фибрилляции сердечной мышцы, чем постоянный. При кратковременном контакте с грудной клеткой могут вызывать сбой в работе сердечной мышцы даже сравнительно малые напряжения (порядка 110–230 В, применяемые в быту) но с заметной разницей силы тока (60 мА для переменного, 300–500 мА для постоянного).

Первые электросети[править | править код]

В 1878 году Эдисон основывает компанию «Эдисон электрик лайт» (сегодня General Electric). К 1879 году закончилась доводка электрической лампочки — одна лампа служила свыше 12 часов. Это число может показаться весьма скромным, но альтернативами в те времена были только свеча, керосиновая лампа и газовое освещение. В 1880 году Эдисон патентует всю систему производства и распространения электроэнергии, которая включала три провода — нулевой, +110 и −110 В (это снижало материалоёмкость при тех же потерях энергии). Одновременно был продемонстрирован невиданный доселе срок жизни лампочки — 1200 часов. Именно тогда Эдисон сказал: «Мы сделаем электрическое освещение настолько дешёвым, что только богачи будут жечь свечи».

В январе 1882 года Эдисон запускает первую электростанцию в Лондоне, а несколькими месяцами позже — в Манхэттене. К 1887 году в США существовало более сотни электростанций постоянного тока, работавших на трёхпроводной системе Эдисона.

Появление переменного тока[править | править код]

В отличие от Эдисона, который проявил себя неутомимым экспериментатором и умелым бизнесменом, сторонники переменного тока основательно знали математику и физику. Ознакомившись с патентом Эдисона, Джордж Вестингауз обнаружил слабое звено его системы — большие потери мощности в проводах.

В 1881 году Люсьен Голар (Франция) и Джон Гиббс (Великобритания) демонстрируют первый трансформатор, пригодный для работы на высоких мощностях. В 1885 Вестингауз покупает несколько трансформаторов Голара-Гиббса и генератор переменного тока производства Siemens & Halske и начинает эксперименты. Через год начинает работу первая 500-вольтовая ГЭС переменного тока в Грейт-Баррингтоне (штат Массачусетс).

Распространению переменного тока мешало отсутствие соответствующих моторов и счётчиков. В 1882 году Тесла изобретает многофазный электромотор, патент на который был получен в 1888 году. В 1884 году Тесла появляется в США. После года успешной работы Эдисон отказывает Тесле в повышении зарплаты[2], и Тесла уходит к Вестингаузу. В 1888 году появляется первый счётчик переменного тока.

Противостояние[править | править код]

Переход на переменный ток должен был стать финансовым поражением Эдисона, который зарабатывал немалую часть денег на патентных отчислениях. Эдисон подал в суд за нарушение более десятка патентов, но решение суда было не в его пользу.

Тогда Эдисон занялся чёрным пиаром: публично демонстрируя убийства животных переменным током рекламировал «безопасное» постоянное напряжение и предостерегал от «опасного» переменного. К тому же примерно в это же время некто Поуп был убит трансформатором с повреждённой изоляцией, стоявшим у него в подвале; это происшествие широко освещалось прессой. Наконец, в 1887 году финансируемый Эдисоном инженер Гарольд Браун предложил идею убивать преступников электричеством — разумеется, «опасным» переменным, а не «безопасным» постоянным.

Вестингауз, ярый противник использования электричества для казни, отказался поставлять генераторы переменного тока для этой цели (добывать их пришлось окольными путями), нанял адвокатов приговорённому к казни на электрическом стуле Кеммлеру, который убил свою сожительницу топором. Адвокаты требовали отменить приговор как противоречащий конституции США, запрещающей «жестокие и необычные наказания». Несмотря на их старания, в 1890 году произошла первая казнь на электрическом стуле. Эдисон подкупил газетчика, и на следующий день в газете появилась статья «

Вестингауз казнил Кеммлера». Казнь выглядела настолько ужасно, что Вестингауз ответил на это однозначно: «Топором бы у них вышло лучше».

В 1891 году трёхфазная система переменного тока, разработанная М. О. Доливо-Добровольским в компании AEG, была представлена на выставке в Франкфурте-на-Майне. В 1893 году Вестингауз и Тесла выиграли заказ на освещение Чикагской ярмарки 200 тысячами электрических лампочек. В 1896 году компания Вестингауза выиграла тендер на строительство крупнейшей на ту пору электростанции на Ниагарском водопаде. По словам Теслы, «мощности водопада хватит на все США». Чтобы примирить Вестингауза и Эдисона, последнему досталось строительство линии электропередачи, ведущей от электростанции в Буффало — ближайший крупный город.

Ещё одним фактом в пользу переменного тока послужила покупка Эдисоном компании Томсон-Хьюстон, занимающейся изучением и строительством агрегатов, основанных на переменном токе. Однако Эдисон не собирался отказываться от ориентации на постоянный ток и от чёрного пиара по отношению к переменному. Так, Эдисон заснял и затем широко распространил в прессе кадры казни переменным током слонихи Топси, затоптавшей трёх человек в 1903 году.

Сворачивание сетей постоянного тока[править | править код]

Электроснабжение постоянного напряжения неохотно сдавало свои позиции. Хотя уже в начале XX века большинство электростанций генерировали переменное напряжение и систему Эдиссона перестали развивать в 1928 году, существовало немало потребителей постоянного тока, для которых использовали преобразователи на ртутных выпрямителях. Электростанции постоянного тока строились вплоть до 1920-х годов. Хельсинки окончательно перешёл на переменный ток в 1940-х годах, Стокгольм — в 1960-х. Тем не менее в США вплоть до конца 1990-х годов существовало 4,6 тыс. разрозненных потребителей постоянного тока. В 1998 году начались попытки перевести их на переменный ток.

С исчезновением в Нью-Йорке последнего потребителя постоянного тока в ноябре 2007 года главный инженер компании «Консолидейтед Эдисон» перерезал символический кабель

[1].

Однако в Сан-Франциско, по состоянию на 2012 год, остаются 97 островков постоянного тока, обслуживающие от семи до десяти зданий каждый, где к ним подключены раритетные лифты. При этом в работе сохраняются и оригинальные кабели, проложенные около 100 лет назад[3].

Сторонники переменного тока[править | править код]

Сторонники постоянного тока[править | править код]

История переменного тока — Циклопедия

 → Переменный ток

История переменного тока — совокупность исторических сведений о переменном токе, от его появления и конкурирования на рынке электроэнергии, до полной монополизации переменного тока во всем мире. Рассматриваются преимущества и недостатки переменного тока во всех областях его эксплуатации. Переменный ток — род тока, направление протекания которого непрерывно меняется. Становится возможным, благодаря наличию разницы потенциалов, подчиняющейся закону. В повседневном понимании форма переменного тока напоминает синусоиду. Переменный ток, в отличие от постоянного, непрерывно изменяется как по величине, так и по направлению. Эти изменения называются частотой. Но самое важное в том, что электростанции постоянного тока, используя обычное напряжение, могут передавать электроэнергию в радиусе не больше мили. Это означает, что для того, чтоб осветить город, нужно было бы построить целую сеть местных электростанций. С переменным током все иначе: для того, чтоб осветить город, нужна одна большая электростанция.

[править] Преимущества переменного тока

  • 1) значительно более дешевое производство генераторов; 2) также и электродвигатели в изготовлении дешевле и проще; 3) более удобная передача на большие расстояния; 4) возможность легко менять напряжение; 5) возможность преобразовывать его в постоянный.

[править] Тесла и переменный ток

  • В 1889 году Никола Тесла начал исследования токов высокой частоты и напряжения. Тесла начал разрабатывать новый тип генератора и двигателя с другим видом тока. Кстати, он же придумал использовать землю как проводник. Этими его открытиями мы пользуемся до сих пор. Известный промышленник, Джорж Вестингауз, хорошенько изучив патент Эдисона, пришел к выводу, что разработанные Теслой, который был менее известным, генераторы переменного тока более рентабельны. Поэтому, он предложил Тесле 1 млн долларов за все полученные им патенты, а также обещал платить по 1 доллару за каждую одну лошадиную силу сделанных на основе патентов генераторов. В те времена единица измерения мощности. С тех времен переменный ток и начал внедряться человечеством.

[править] Появление электричества в России

  • Первый трамвай в Москве В начале XX века на территории России крестьяне переезжают в город для получения работы на заводах и фабриках. Вследствие этого на территории крупных городов строятся микрорайоны для обеспечения рабочих жильем. Эти микрорайоны находились на большом расстоянии и для того чтобы добраться до работы нужен был транспорт. Это способствовало появления трамваев и проводкой электричества в дома.

[править] Война переменного и постоянного тока

Противостояние Томаса Эдисона и Николы Теслы (а также Джорджа Вестингауза) в борьбе за использование постоянного и переменного тока соответственно. «Война» продолжалась свыше ста лет и закончилась в конце ноября 2007 года с окончательным переходом Нью-Йорка с постоянного тока на переменный. Война токов берет своё начало с 80-х годов XIX века, когда электричество начинает активно применяться при котором возникает проблема распределения и подачи электроэнергии на дальние расстояния. Постоянны ток не мог похвастаться передачей электроэнергии на дальние, а если и эта электроэнергия могла быть передана, то электрическое напряжение было очень маленьким следовательно не выгодным для использования. Переменный ток может менять своё напряжение с помощью трансформаторов — это способствует передавать электроэнергию на большие расстояния по магистральным линиям. При кратковременном воздействии постоянного тока на человека вызывает сбой в работе сердечной мышцы, а действие переменного тока на человека даже используется в медицине, действие переменного тока способствует очищения кожи человека от сыпи и бактерий. Переменный ток имел проблемы в распространении для больших масс в том, что не было соответствующих моторов и счетчиков. Вскоре к 1882 году Тесла справился с этой проблемой и изобрел многофазный электромотор, который получил патент в 1888 году и в этом же году появляется первый счётчик переменного тока. Противостояние Когда Томас Эдисон начинает понимать, что общество постепенно переходит на переменный ток и, следовательно, отказывается от постоянного, он начинает проводить политику черного пиара против переменного тока. Это выражалось в том, что Эдисон публично убивал животных действием на ни переменным током. Он открыто высказывался, то переменный ток является более опасным чем постоянный. Черный пиар Эддисона ни к чему не приводил. Люди, работавшие с переменным током, получали огромные заказы на освещение разных объектов(одним из таких объектов стала Чикагская ярмарка в 1893 году). Война завершается победой переменной тока в середине 90-х годов XX столетия. Эта победа обуславливается сворачивание сетей постоянного тока. Хотя и по сей день в разных районах Америки до сих пор используется постоянный ток для поддержания работы устройств работающих изначально на постоянном токе, например, раритетные лифты.

10 величайших изобретений Николы Теслы, без которых невозможно представить современность

Никола Тесла был человеком с огромным количеством идей. Судите сами: с именем учёного связано более трёхсот патентов. Он далеко опережал время, поэтому многие его теории, к большому сожалению, не нашли физического воплощения. Несмотря на то, что Тесла так и не получил признания от главного соперника, Томаса Эдисона, его неоспоримый талант принёс человечеству действительно полезные изобретения.

Мы собрали некоторые из наиболее впечатляющих творений Николы Теслы.

Катушка Тесла

Самое зрелищное изобретение Николы Теслы

Катушка Тесла была изобретена в 1891 году. Она состояла из первичной и вторичной катушек, у каждой из которых был собственный конденсатор для запаса энергии. Между катушками находился искровой промежуток, в котором генерировался разряд электричества, способного преобразовываться в дуги, проходить сквозь тело и создавать область заряженных электронов.

Тесла был одержим мечтой беспроводной городской электрификации, что и послужило толчком к изобретению этого механизма. В наши дни катушка Тесла чаще всего используется для развлечения и популяризации науки — её можно увидеть в экспозициях естественно-научных музеев по всему миру. Однако важность данного изобретения заключается в том, что был найден ключ к пониманию природы электричества и возможности его использования.

Усиливающий передатчик

Башня Варденклифф — один из символов гения Теслы

Развивая идею передачи электроэнергии без применения проводов, Тесла решил, что лучше всего это делать на больших высотах. Именно поэтому, пользуясь финансовой помощью меценатов, он создал лабораторию в горах Колорадо-Спрингс в 1899 году. Там он построил свою самую большую и мощную катушку Тесла, которую назвал «усиливающим передатчиком». Он состоял из трёх катушек и составлял почти 16 метров в диаметре. Передатчик генерировал миллионы вольт электричества и создавал пучки молний длиной до 40 метров. На тот момент это была самая мощная молния, созданная искусственно.

Проблема заключалась в том, что Тесла был слишком амбициозен для своей эпохи: идея беспроводной передачи энергии начала воплощаться в жизнь лишь во втором десятилетии XXI века, да и то в качестве концептов и образцов. Несмотря на то, что проект всё ещё лежит за пределами повседневного использования, дальновидность изобретателя поражает. Усиливающий передатчик был предшественником Башни Тесла, или башни Варденклифф, которая, по замыслу своего создателя, должна была обеспечить мир бесплатным электричеством и коммуникацией. Тесла начал работу над проектом в 1901 году, но после того, как финансирование прекратилось, он свернул свои изыскания, а в 1915 году участок был выставлен на торги. Провал выбил землю из-под ног изобретателя: его постиг нервный срыв, и Никола Тесла объявил о своём банкротстве.

Турбина Николы Тесла

Эффективность и рациональность всегда присутствовали в творениях Теслы

В начале XX века, на заре эры поршневых двигателей внутреннего сгорания, Тесла создал свою турбину, которая могла конкурировать с двигателем внутреннего сгорания (ДСВ). В турбине отсутствовали лопасти, а топливо сгорало вне камеры, вращая гладкие диски. Именно их вращение и давало работу двигателю.

В 1900 году, когда Тесла протестировал свой двигатель, эффективность потребления топлива составила 60% (к слову, с нынешними технологиями этот показатель не превышает 42% преобразования топлива в энергию). Несмотря на безусловный успех изобретения, оно не прижилось: бизнес был ориентирован именно на поршневые ДСВ, которые и сейчас, спустя более 100 лет, остаются основной движущей силой автомобилей.

Теневая фотография

Нога гения в ботинке стала достоянием истории

В 1895 году немецкий физик Вильгельм Конрад Рентген обнаружил таинственную энергию, которую он назвал «рентгеновскими лучами». Он обнаружил, что если поместить фотоплёнку между частью тела и свинцовым экраном, то получится снимок костей. Спустя несколько лет, именно снимок руки жены учёного, на котором видно костное строение конечности и обручальное кольцо, принёс Рентгену мировую известность.

При этом есть ряд доказательств того, что ещё до открытия рентгеновских лучей, Тесла знал об их существовании: его исследования были прекращены из-за пожара в лаборатории в 1895 году, который произошёл незадолго до публикации результата опытов Рентгена. Тем не менее, открытие новых лучей вдохновило Николу Теслу на создание собственной версии рентгена с использованием вакуумных трубок. Свою технологию он назвал «теневой фотографией».

Тесла считается первым человеком в США, сделавшим рентгеновский снимок собственного тела: «в кадре» оказались его ноги в ботинках. Этот снимок вместе с восторженным письмом, в котором Никола Тесла поздравлял своего коллегу с великим открытием, был отправлен Рентгену. Тот, в свою очередь, похвалил американского учёного за чёткость и хорошее качество его теневой фотографии. Эта особенность улучшенного метода внесла значительный вклад в развитие современных рентгеновских аппаратов, и её так и не удалось превзойти.

Радио

Тесла опередил Маркони, но всё же не стал отцом радио

Личность изобретателя радио по сей день является предметом ожесточённых споров. В 1895 году Тесла был готов передать радиосигнал на расстояние 50 км, но, как мы уже знаем, его лаборатория сгорела, что затормозило исследования в данной области. В то же время в Англии итальянец Гульельмо Маркони разработал и запатентовал технологию беспроволочной телеграфии в 1896 году. В системе Маркони использовались два контура, что снизило покрывающую площадь радиопередачи, а наработки Тесла могли значительно увеличить выходную мощность сигнала.

Никола Тесла представил своё изобретение перед Патентным бюро США в 1897 году и получил патент в 1900 году. В это же время Маркони попытался получить патент в США, но его изобретение было отвергнуто, так как оно слишком сильно походило на уже запатентованную технологию, принадлежащую Тесле. Испугавшись, Маркони открыл собственную компанию, находящуюся под серьёзной защитой Эндрю Карнеги и Томаса Эдисона.

В 1901 году, используя ряд патентов, принадлежащих Тесле, Маркони смог передавать радиоволны через Атлантику. В 1904 году, не имея внятного обоснования, Патентное бюро отменило своё решение и признало патент Маркони действительным, что и сделало его формальным изобретателем радио. В 1911 году итальянец получил Нобелевскую премию, а спустя 4 года, в 1915, Тесла подал в суд на компанию, принадлежащую Маркони, за незаконное использование чужой интеллектуальной собственности. К сожалению, на тот момент Никола Тесла был слишком беден, чтобы судиться с крупной корпорацией. Судебные тяжбы прекратились лишь в 1943 году, через несколько месяцев после смерти изобретателя. Тогда комиссия постановила законность его требований и оставила в силе патент Теслы.

Неоновые лампы

Ко всему прочему, Тесла изобрёл неоновые вывески

Несмотря на то, что флуоресцентный или неоновый свет не был открыт Николой Теслой, он внёс весомый вклад в улучшение технологии их получения: никто до сих пор не придумал альтернативы его катодному излучению, получаемому с помощью электродов, помещённых в вакуумные трубки.

Тесла увидел потенциал экспериментов с газовой средой, через которую проходили электрические частицы, а также разработал четыре различных типа освещения. Например, он конвертировал так называемый чёрный цвет в видимый спектр с помощью фосфоресцирующих веществ, созданных им же. Кроме того, Тесла нашёл практическое применение таким технологиям, как неоновые лампы и рекламные вывески.

На Всемирной выставке в Чикаго (также именуемой Колумбийской Экспозицией) в 1893 году, Тесла оборудовал своё выставочное место неоновыми вывесками, которые мгновенно произвели впечатление на посетителей. Идея настолько понравилась людям, что неоновые огни с тех пор стали символом мегаполисов по всему миру.

Трансформаторная подстанция гидроэлектростанции Адамса

Тесла построил первую подстанцию плотины, обуздавшей силу водопада

Комиссия по Ниагарскому водопаду находилась в поиске компании, которая в силах построить ГЭС, способную обуздать мощь водных ресурсов на долгие годы. Сначала фоворитом была фирма Томаса Эдисона, однако после того, как Тесла продемонстрировал эффективность переменного тока перед представителями компании «Уэстингхаус Электрик», выбор пал на него в 1983 году. Инженеры «Уэстингхаус» использовали наработки Николы Тесла, но большим препятствием было получение финансирования столь инновационного проекта, в жизнеспособности которого сомневались многие.

Тем не менее, 16 ноября 1896 года в машинном зале ГЭС Адамса был торжественно повернут рубильник, а станция начала обеспечивать электричеством город Буффало в штате Нью-Йорк. Позже были построены ещё десять генераторов, работающих для электрификации Нью-Йорка. Для того времени проект был поистине революционным и поставил планку для всех современных электростанций.

Асинхронный двигатель

Ещё одно изобретение Тесла, которое всё ещё используется в каждом доме

Асинхронный двигатель состоит из двух частей — статора и ротора и в работе используется переменный ток. Статор остаётся неподвижным, с помощью магнитов вращая ротор, находящийся в середине конструкции. Такой тип двигателя отличается долговечностью, простотой в использовании и сравнительно низкой стоимостью.

В 80-х годах XIX века над созданием асинхронного двигателя трудились два изобретателя: Никола Тесла и Галилео Феррари. Оба они представили свои наработки в 1888 году, однако Феррари опередил своего соперника на два месяца. При этом их исследования были независимы, а результаты идентичны, к тому же оба изобретателя использовали патенты Теслы. Асинхронный двигатель стал невероятно популярным и используется до сих пор в пылесосах, фенах и электроинструментах.

Телеавтомат

Так выглядел предок современных дронов

В 1898 году, на выставке электротехники в Мэдисон-Сквер-Гарден, Тесла продемонстрировал своё изобретение, которое он назвал «телеавтоматом». По сути, это была первая в мире радиоуправляемая модель судна. У изобретения не было патента, так как представители Патентного бюро не желали признавать существование того, что (по их мнению) не могло существовать. Никола Тесла показал несостоятельность их сомнений, продемонстрировав своё изобретение на выставке. Он дистанционно управлял рулевым винтом модели и освещением корпуса с помощью радиоволн.

Это изобретение стало первой ступенью в трёх совершенно разных сферах. Во-первых, Тесла разработал пульт дистанционного управления, который сейчас применяется в быту — от домашних телевизоров до гаражных ворот. Во-вторых, модель была первым роботом, который двигался без прямого воздействия человека. И наконец, в-третьих, сочетание робототехники и дистанционного управления позволяют назвать катер Николы Тесла прадедушкой современных дронов.

Изобретение переменного тока

Без этого изобретения Теслы современный мир выглядел бы иначе

Не подлежит сомнению тот факт, что наиболее важные изобретения Николы Теслы связаны с переменным током. Хоть изобретатель и не является пионером в этой области, его изыскания позволили провести электрификацию на мировом уровне.

Говоря о том, как переменный ток завоевал мир, нельзя не упомянуть имя Томаса Эдисона. На заре своей деятельности, Тесла трудился в компании своего будущего соперника. Именно фирма Эдисона первой стала работать с постоянным током. Переменный ток схож по характеристикам с батареями, так как посылает энергию на носители вне контура. Проблема в том, что сила тока постепенно ослабевает, а это делает невозможным перемещение электричества на большие расстояния. Эту задачу решил Тесла, работая с переменным током, который позволяет перемещать электричество от источника и обратно, а также покрывать огромные расстояния между объектами.

Томас Эдисон осуждал Николу Теслу за его исследования в области переменного тока, считая их бессмысленными и бесперспективными. Именно эта критика послужила поводом для того, чтобы пути двух изобретателей разошлись навсегда. Пока Тесла был безработным и перебивался на случайных заработках, он не мог собрать средства для создания собственной компании. Прошлые успехи привлекли к его работам внимание Джорджа Уэстингхауса, инженера и бизнесмена. Он выкупил все патенты Николы Теслы, связанные с переменным током.

Поворотным моментом в истории электричества можно назвать тендер на установку освещения Всемирной выставки в Чикаго в 1983 году, в котором участвовали фирмы Эдисона и Уэстингхауса. Первый предложил электрифицировать экспозицию за 554 тысячи долларов, а второй обещал сделать это за 399 тысяч долларов, что и дало ему победу и контракт, а затем и успешное воплощение обещанного в жизнь, тем самым обеспечив переменному току светлое будущее. И снова благодаря великому гению Николы Теслы.

Все эти изобретения ещё раз доказывают, что, в первую очередь, Тесла был мечтателем, который не боялся сойти с протоптанной тропы классической науки и мыслить шире установленных в то время рамок. Кто знает, в каком бы веке мы сейчас жили, не будь Тесла одержимым новыми идеями практиком?

Переменный ток — Википедия

     Синусоидальный

Переме́нный ток — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным[1].

Хотя переменный ток часто переводят на английский как alternating current, эти термины не эквивалентны. Термин alternating current (AC) в узком смысле означает синусоидальный ток, в широком смысле — периодический знакопеременный ток (то есть периодический двунаправленный ток). Условное обозначение на электроприборах: ∼{\displaystyle \thicksim } или ≈{\displaystyle \thickapprox } (знак синусоиды), или латинскими буквами AC{\displaystyle AC}.

Так как переменный ток в общем случае меняется в электрической цепи не только по величине, но и по направлению, то одно из направлений переменного тока в цепи считают условно положительным, а другое, противоположное первому, условно отрицательным. В соответствии с этим и величину мгновенного значения переменного тока в первом случае считают положительной, а во втором случае — отрицательной.

Переменный ток — величина алгебраическая, знак его определяется тем, в каком направлении в рассматриваемый момент времени протекает ток в цепи — в положительном или отрицательном.

Величина переменного тока, соответствующая данному моменту времени, называется мгновенным значением переменного тока.

Максимальное мгновенное значение переменного тока, которое он достигает в процессе своего изменения, называется амплитудой тока Im{\displaystyle I_{m}}.

График зависимости переменного тока от времени называется развёрнутой диаграммой переменного тока.
Развёрнутая диаграмма переменного синусоидального тока

На рисунке приведена развёрнутая диаграмма переменного тока, изменяющегося с течением времени по величине и направлению. На горизонтальной оси 0t{\displaystyle 0t} отложены в определённом масштабе отрезки времени, а по вертикальной оси — величины тока, вверх — от начальной точки 0{\displaystyle 0} — положительные, вниз — отрицательные. Часть развёрнутой диаграммы тока, расположенная выше оси времени 0t{\displaystyle 0t}, характеризует изменение положительных величин во времени, а часть, расположенная ниже оси времени 0t{\displaystyle 0t}, — изменение отрицательных величин.

В начальный момент времени t=0{\displaystyle t=0} ток равен нулю (i=0){\displaystyle (i=0)}. Затем он с течением времени растёт в положительном направлении, в момент времени t=T4{\displaystyle t={\frac {T}{4}}} достигает максимального значения, после чего убывает по величине и в момент времени t=T2{\displaystyle t={\frac {T}{2}}} становится равным нулю. Затем, пройдя через нулевое значение, ток меняет свой знак на противоположный, то есть становится отрицательным, затем растёт по абсолютной величине, затем достигает максимума при t=34T{\displaystyle t={\frac {3}{4}}T}, после чего убывает и при t=T{\displaystyle t=T} становится равным нулю.

Развёрнутая диаграмма периодического переменного тока

Периодическим переменным током называется такой электрический ток, который через равные промежутки времени повторяет полный цикл своих изменений, возвращаясь к своей исходной величине.

На представленной диаграмме мы видим, что через равные промежутки времени T{\displaystyle T} график тока воспроизводится полностью без каких-либо изменений.

Время T{\displaystyle T}, в течение которого переменный периодический ток совершает полный цикл своих изменений, возвращаясь к своей исходной величине, называется периодом переменного тока.

Величина, обратная периоду, называется частотой переменного тока:

f=1T{\displaystyle f={\frac {1}{T}}}, где
f{\displaystyle f} — частота переменного тока;
T{\displaystyle T} — период переменного тока.

Если выразить время T{\displaystyle T} в секундах (sec), то будем иметь:

f=1T[1sec]{\displaystyle f={\frac {1}{T}}\left[{\frac {1}{sec}}\right]}, то есть размерность частоты переменного тока выражается в 1/с.

Частота переменного тока численно равна числу периодов в секунду.

За единицу измерения частоты переменного тока принят 1 герц (1 гц, 1 Гц, 1 Hz).

Герц — единица Международной системы единиц (СИ), названа в честь Генриха Герца. Через основные единицы СИ герц выражается следующим образом: 1 Гц = 1 с−1. Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

Частота переменного тока равна одному герцу, если период тока равен одной секунде (один полный цикл за одну секунду).

Стандарты частоты[править | править код]

В большинстве стран в электротехнике применяются частоты 50 или 60 Гц (60 Гц — этот вариант принят в США и Канаде). В некоторых странах, например, в Японии, используются оба стандарта (см. Промышленная частота переменного тока).

Частота 16 ⅔ Гц до сих пор используется в некоторых европейских железнодорожных сетях (Австрия, Германия, Норвегия, Швеция и Швейцария), частота 25 Гц — на старых железнодорожных линиях США. (См. Электрификация железных дорог переменным током пониженной частоты).

В авиации и военной технике для снижения массы устройств или с целью повышения частоты вращения электродвигателей переменного тока применяется частота 400 Гц.

Число оборотов ротора n[1min]{\displaystyle n\left[{\frac {1}{min}}\right]} синхронного электродвигателя определяется по формуле:

n=60fp{\displaystyle n={\frac {60f}{p}}}, где

f{\displaystyle f} — частота переменного тока;

p{\displaystyle p} — число пар полюсов.

Так как минимальное число пар полюсов равно единице, тогда синхронный электродвигатель, работающий на переменном токе частотой 50 герц разовьёт 3 000 оборотов в минуту, а электродвигатель, работающий на переменном токе частотой 400 герц, разовьёт 24 000 оборотов в минуту. Частота вращения ротора асинхронного электродвигателя меньше, чем частота питающего его тока и зависит от нагрузки. Скольжение — разность между частотой вращения вращающегося магнитного поля и частотой вращения ротора.

В технике связи применяются частоты более высокие, и в частности в радиотехнике — порядка миллионов и миллиардов герц.

p

Синусоидальным током называется периодический переменный ток, который с течением времени изменяется по гармоническому закону синуса.

Синусоидальный ток — элементарный, то есть его невозможно разложить на другие более простые переменные токи[2].

Переменный синусоидальный ток выражается формулой:

i=Imsin⁡ωt{\displaystyle i=I_{m}\sin \omega t}, где

Im{\displaystyle I_{m}} — амплитуда синусоидального тока;

ωt{\displaystyle \omega t} — некоторый угол, называемый фазой синусоидального тока.

Фаза синусоидального тока ωt{\displaystyle \omega t} изменяется пропорционально времени t{\displaystyle t}.

Множитель ω{\displaystyle \omega }, входящий в выражение фазы ωt{\displaystyle \omega t} — величина постоянная, называемая угловой частотой переменного тока (круговой частотой переменного тока).

Угловая частота ω{\displaystyle \omega } синусоидального тока зависит от частоты f{\displaystyle f} этого тока и определяется формулой:

ω=2πf=2πT{\displaystyle \omega =2\pi f={\frac {2\pi }{T}}}, где

ω{\displaystyle \omega } — угловая (круговая) частота синусоидального тока;

f{\displaystyle f} — частота синусоидального тока;

T{\displaystyle T} — период синусоидального тока;

2π{\displaystyle 2\pi } — центральный угол окружности, выраженный в радианах.

Исходя из формулы ω=2πf=2πT{\displaystyle \omega =2\pi f={\frac {2\pi }{T}}}, можно определить размерность угловой (круговой) частоты:

[ω]=[2πT]=[1sec]{\displaystyle \left[\omega \right]=\left[{2\pi \over T}\right]=\left[{1 \over sec}\right]}, где

sec{\displaystyle sec} — время в секундах,

2π{\displaystyle 2\pi } — угол в радианах, является безразмерной величиной.

Фаза ωt{\displaystyle \omega t} синусоидального тока измеряется радианами.

1 радиан = 57,29° = 57°17′, угол 90° = π2{\displaystyle \pi \over 2} радиан, угол 180° = π{\displaystyle \pi } радиан, угол 270° = 3π2{\displaystyle 3\pi \over 2} радиан, угол 360° = 2π{\displaystyle 2\pi } радиан,
где π=3,14{\displaystyle \pi =3,14} радиан; π{\displaystyle \pi } — число «Пи», ° — угловой градус и  — угловая минута.

Формула i=Imsin⁡ωt{\displaystyle i=I_{m}\sin \omega t} описывает случай, когда наблюдение за изменением переменного синусоидального тока начинается с момента времени t=0{\displaystyle t=0}. Если начальный момент времени не равен нулю, тогда формула для определения мгновенного значения переменного синусоидального тока принимает следующий вид:

i=Imsin⁡(ωt+ψ){\displaystyle i=I_{m}\sin(\omega t+\psi )}, где

(ωt+ψ){\displaystyle (\omega t+\psi )} — фаза переменного синусоидального тока;

ψ{\displaystyle \psi } — угол, называемый начальной фазой переменного синусоидального тока.

Если в формуле i=Imsin⁡(ωt+ψ){\displaystyle i=I_{m}\sin(\omega t+\psi )} принять t=0{\displaystyle t=0}, то будем иметь

ωt=0{\displaystyle \omega t=0}, ωt+ψ=ψ{\displaystyle \omega t+\psi =\psi } и it=0=Imsin⁡ψ{\displaystyle i_{t=0}=I_{m}\sin \psi }.

Начальная фаза — это фаза синусоидального тока в момент времени t=0{\displaystyle t=0}.

Начальная фаза переменного синусоидального тока может быть положительной (ψ>0){\displaystyle (\psi >0)} или отрицательной (ψ<0){\displaystyle (\psi <0)} величиной. При ψ>0{\displaystyle \psi >0} мгновенное значение синусоидального тока в момент времени t=0{\displaystyle t=0} положительно, при ψ<0{\displaystyle \psi <0} — отрицательно.

Если начальная фаза ψ=π2{\displaystyle \psi ={\frac {\pi }{2}}}, то ток определяется по формуле i=Imsin⁡(ωt+π2){\displaystyle i=I_{m}\sin(\omega t+{\frac {\pi }{2}})}. Мгновенное значение его в момент времени t=0{\displaystyle t=0} равно

it=0=Imsin⁡π2=Im{\displaystyle i_{t=0}=I_{m}\sin {\frac {\pi }{2}}=I_{m}}, то есть равно положительной амплитуде тока.

Если начальная фаза ψ=−π2{\displaystyle \psi =-{\frac {\pi }{2}}}, то ток определяется по формуле i=Imsin⁡(ωt−π2){\displaystyle i=I_{m}\sin(\omega t-{\frac {\pi }{2}})}. Мгновенное значение его в момент времени t=0{\displaystyle t=0} равно

it=0=Imsin⁡(−π2)=−Im{\displaystyle i_{t=0}=I_{m}\sin(-{\frac {\pi }{2}})=-I_{m}}, то есть равно отрицательной амплитуде тока.

Два синусоидальных тока совпадают по фазе друг с другом

Синусоидальные токи сдвинуты по фазе на угол π2{\displaystyle {\frac {\pi }{2}}}

Два переменных синусоидальных тока совпадают по фазе, если они имеют одинаковые фазы и, следовательно, одновременно достигают своих нулевых и максимальных значений одинакового знака.

На левой иллюстрации представлены развёрнутые диаграммы токов i1{\displaystyle i_{1}} и i2{\displaystyle i_{2}}. Токи i1=I1msin⁡ωt{\displaystyle i_{1}=I_{1m}\sin \omega t} и i2=I2msin⁡ωt{\displaystyle i_{2}=I_{2m}\sin \omega t} совпадают по фазе.

Два переменных синусоидальных тока сдвинуты по фазе относительно друг друга, если они имеют различные фазы.

На правой иллюстрации токи i1=I1msin⁡(ωt+π2){\displaystyle i_{1}=I_{1m}\sin(\omega t+{\frac {\pi }{2}})} и i2=I2msin⁡ωt{\displaystyle i_{2}=I_{2m}\sin {\omega t}} сдвинуты по фазе на угол π2{\displaystyle {\frac {\pi }{2}}}, так как

(ωt+π2)−ωt=π2{\displaystyle (\omega t+{\frac {\pi }{2}})-{\omega t}={\frac {\pi }{2}}}.

Ток i1{\displaystyle i_{1}} опережает по фазе ток i2{\displaystyle i_{2}} на угол π2{\displaystyle {\frac {\pi }{2}}}, или, иначе, ток i2{\displaystyle i_{2}} отстаёт по фазе относительно тока i1{\displaystyle i_{1}} на угол π2{\displaystyle {\frac {\pi }{2}}}.

Трёхфазный ток[править | править код]

Изобретения Николы Теслы — История изобретений

В этой большой обзорной статье мы поговорим о том, что изобрёл Никола Тесла, выдающийся изобретатель и учёный. Мы постараемся описать все наиболее важные из его изобретений, а также расскажем о тех, о которых вы могли и не знать.

Никола Тесла — это, пожалуй, один из самых известных изобретателей в мире наравне с Архимедом или Леонардо да Винчи, чей вклад в мировую науку крайне трудно переоценить. Родился и вырос Тесла в Сербии, где и получил образование. Уже со студенческих лет он проявлял самостоятельность мышления и тягу к изобретательству. Позже он переезжает во Францию, а затем в США, где и проживает большую часть своей жизни, занимаясь изобретательством. Количество его патентов включает в себя более 150 изобретений и различных усовершенствований. Некоторые даже считают, что именно Никола Тесла изобрёл 20-й век, так как он был не просто практиком, но и теоретиком.

Интересы Теслы лежали в основном в сфере радиотехники и электротехники, а также в области изучения свойств электромагнетизма и передачи электричества на большие расстояния. Основные его изобретения связаны с переменным током и электрическими машинами, использующим его. Также в нашей статье мы поговорим об изобретениях Теслы в области беспроводного освещения и беспроводной передачи электроэнергии.

Жизнь Теслы в целом была трудной и порой крайне неудачной. Далеко не все его изобретения были коммерчески успешными, он часто становился банкротом или жертвой обмана (Эдисон кинул его на большую сумму) или обстоятельств (например, известный пожар в его лаборатории уничтожил множество прототипов).

Безусловно, что теоретический вклад Теслы огромен, но нас в этой статье будут интересовать прежде всего практические реализации его идей и задумок, поэтому давайте посмотрим на список изобретений Николы Тесла. Для удобства навигации по статье предоставляем небольшое содержание:

Переменный ток

DC — постоянный ток, AC — переменный ток

Прежде чем научиться использовать переменный ток, его необходимо сначала получить. В общем-то о переменном токе физики знали уже давно (со времён открытия электромагнитной индукции) и Тесла его как таковой не открывал, но тогда все полагали, что переменный ток — это попросту «мусор», который вряд ли как-то получится использовать. Тесла же был другого мнения и сразу увидел весь потенциал переменного тока.

Постоянный ток непрерывно течёт в одном направлении; переменный ток меняет своё направление 50 или 60 раз в секунду и у него можно изменять напряжение до высоких уровней, минимизируя при этом потери мощности на больших расстояниях. Позже напряжение переменного тока можно понижать, чтобы использовать его на заводах или в жилых домах. Тесла понял, что будущее принадлежит переменному току.

Тесла описал свои двигатели и электрические системы в статьей «Новая система двигателей переменного тока и трансформаторов», которую он презентовал в Американском институте инженеров-электриков в 1888 году. Именно тогда Джордж Вестингауз заинтересовался разработками Теслы, и однажды он посетил его лабораторию и поразился увиденному. Никола Тесла построил модель многофазной системы из понижающих и повышающих трансформаторов переменного тока, а также двигателя переменного тока. Так началось партнёрство Ветсингауза и Теслы. Позже Никола Тесла получил 40 патентов на свои изобретения в США, а Вестингауз выкупил их все, чтобы обеспечить себя богатством, а Америку переменным током.

Ниже мы как раз и поговорим об этих машинах и о том, как в США внедрялась многофазная система электроснабжения.

Генератор переменного тока

Генератор переменного тока — это электрическая машина, которая является составной частью полифазной системы электроснабжения Теслы, о которой речь пойдёт ниже. Генератор создаёт переменный ток, используя механическую работу (например, генераторы, установленные на дамбах, использующие падающую на их лопасти воду).

Мы не будем объяснять принцип работы генератора. Посмотрите видео ниже, если хотите понять подробнее.

Альтернатор Теслы (другое название генератора переменного тока) превосходил все другие по той простой причине, что он был действительно эффективен на практике. Свой генератор Тесла изобрёл ещё будучи на 2 курсе и уже тогда обращался к своим преподавателям с идеей использования переменного тока, но от его идей все отмахивались, как от бредовых. Некоторые профессора даже просто смеялись над его изобретениями.

В 1882 году Тесла работает в Париже и создаёт первый рабочий прототип своего генератора.

Приехав в 1884 году в США, Тесла направился к тогда уже известному изобретателю и коммерсанту в области электричества Томасу Эдисону и устроился к нему на работу. Попутно Тесла предлагал Эдисону свои идеи по использованию переменного тока, но Эдисон считал, что он сошёл с ума, раз думает, что переменный ток можно хоть как-то использовать. Дошло даже до того, что Тесла, не поняв сарказма Эдисона, подумал, что получит большую сумму от Эдисона, если сделает несколько десятков определённых изобретений на заказ. Тесла их сделал, а Эдисон сказал, что пошутил, а Тесле рекомендовал научиться понимать американский юмор.

В 1891 году Тесла получает в США патент на первый в мире альтернатор.

Генератор переменного тока 1891 года

Патент Теслы на генератор переменного тока

Многофазный генератор Теслы мощностью 500 л.с. (около 370 кВт) на выставке Вестингауза

Двигатель переменного тока

Двигатель переменного тока или асинхронная машина — это ещё один этап в развитии идей применения переменного тока. Генератор переменного тока мы уже обсудили, значит электричество мы получаем, но что с ним делать дальше? У нас ведь нет машин, которые бы работали от переменного тока! Вот Тесла их и изобрёл.

Патент Теслы на электрический двигатель 1888 года

В 1880-е года множество изобретателей пыталось изобрести рабочие варианты двигателей переменного тока, но сделать этого не удавалось. Галилео Феррарис занимается теоретическим исследованием создания двигателей переменного тока и приходит к ошибочному выводу, что они попросту не могут быть эффективными и коммерчески успешными. Это добавило мотивации изобретателям всего мира, это звучало как вызов — создать эффективный двигатель переменного тока. Тесла отвечает на этот вызов и демонстрирует в 1887 году свой первый вариант двигателя, работающего на переменном токе, а в 1887 году совершенствует свою модель, выпуская вторую машину.

Один из оригинальных электрических моторов Теслы 1888 года.

Основная причина, по которой рациональное использование двигателей переменного тока казалось невозможным, заключалась в том, что они были однофазовыми. Тесла же обосновал теоретически и доказал практически, что можно не ограничиваться одной фазой, а делать две или больше фаз.

На картинке ниже показано схематически устройство двух- и трёхфазных двигателей переменного тока:

Позже Тесла изобретает и патентует множество модифицированных моторов и двигателей переменного тока. Все эти патенты, как писалось выше, Тесла продаёт Вестингаузу.

Двухфазный электрический двигатель переменного тока из коллекции Вестингауза.

4-х фазный электрический двигатель переменного тока из коллекции Вестингауза.

Полифазный электрический двигатель переменного тока из коллекции Вестингауза.

Многофазная система электроснабжения

Тесла обратил внимание, что электрические станции постоянного тока Эдисона неэффективны, а Эдисон уже застроил ими всё Атлантическое побережье США. Чтобы преодолеть недостатки постоянного тока, надо было, по идее Теслы, использовать переменный ток. Многофазной такая система называется потому, что двигатели и генераторы имеют несколько фаз (см. пояснения выше).

Лампа Эдисона

Лампы Эдисона были слабыми и неэффективными при использовании постоянного тока. Вся эта система имела один большой недостаток в том, что она не могла транспортировать электричество на расстояние более 3 км из-за неспособности изменять напряжение до высокого уровня, необходимого для передачи на большие расстояния. Поэтому электростанции постоянного тока устанавливались с интервалом в 3 км.

Схема работы многофазных систем электроснабжения

Переменный ток, как писалось выше, мог достигать больших напряжений и поэтому его можно было передавать на огромные расстояния (выйдите из дома и посмотрите на ближайшие высоковольтные линии электропередач, это оно самое).

Когда Эдисон узнал, что у него появился столь мощный конкурент, он понял, что может потерять свою империю постоянного тока. Именно так и началась война между Вестингауза вместе с Теслой против Эдисона, которую назовут войной токов. Эдисон начал усиленно пытаться дискредитировать изобретение Теслы, показывая, что переменный ток более опасен для жизни, чем постоянный.

Стоит также отметить, что когда Тесла приехал в США, то сначала он предложил свои разработки Эдисону, но он назвал всё это вздором и сумасшествием.

Эдисон бил переменным током животных на публике, чтобы привести их в ярость и доказать, что этот вид тока опасен. Однажды Эдисон узнал об идее одного врача, об использовании переменного тока для умерщвления людей. Реализация не застала себя ждать. Так был изобретён электрический стул, который впервые применили к Уильяму Кеммлеру, виновному в убийстве своей любовницы.

Эдисон долго не мог придумать для своего нового изобретения название, но ему больше всего нравилось слово «увестингаузить», правда ни один из них, как мы теперь видим, не прижился.

Читайте также отдельную статью про изобретения Томаса Эдисона.

Тесла тоже не сидел без дела и отвечал на все попытки дискредитации Эдисона. Он стремился наоборот показать, что переменный ток не опасен и показывал это, при помощи скин-эффекта.

Австралийский любитель электрического эксгибиционизма Питер Террен бьёт себя в течение 15 секунд током в 200 000 вольт при помощи катушки Тесла, демонстрируя скин-эффект.

Как мы знаем, Тесла и Вестингауз в конечном итоге победили, поэтому переменный ток стал повсеместным явлением. Понадобилась целая экономическая и юридическая война, чтобы обеспечить Америку и весь мир более прогрессивным изобретением.

Катушка или трансформатор Теслы

Тесла изобрёл свою катушку примерно в 1891 году. В то время он повторял эксперименты Герниха Герца, который обнаружил электромагнитное излучение тремя годами ранее. Тесла решил запустить его устройство вместе с высокоскоростным генератором переменного тока, который он разрабатывал в рамках улучшения системы дугового освещения, но он обнаружил, что ток высокой частоты перегревает стальной сердечник и плавит изоляцию между первичной и вторичной обмотками в катушке Румкорфа, которая использовалась по умолчанию в экспериментах Герца. Для устранения этой проблемы Тесла решает изменить конструкцию таким образом, чтобы образовался воздушный зазор между первичной и вторичной обмотками, вместо изоляционного материала. Тесла сделал так, что сердечник мог быть перемещён в различные положения в катушке. Тесла также установил конденсатор, который обычно используются в таких установках между генератором и его первичной катушкой обмотки, чтобы избежать выгорания катушки. Экспериментируя с настройками катушки и конденсатора, Тесла обнаружил, что он мог бы воспользоваться возникающим резонансом между ними для достижения более высоких частот.

В катушке трансформатора Теслы конденсатор, после пробивания короткой искры, подключался к катушке из нескольких витков (первичная катушка), формируя таким образом резонансный контур с частотой колебания, как правило, 20-100 кГц, определяемый ёмкостью конденсатора и индуктивностью катушки.

Конденсатор заряжался до напряжения, которое необходимо для пробоя воздушного искрового промежутка, при входном линейном цикле, что достигает примерно 10 киловольтам при использовании линейного трансформатора, который подключён через воздушный зазор. Линейный трансформатор был спроектирован так, чтобы иметь более высокую, чем обычно, индуктивность рассеяния (параметр, отражающий неидеальность трансформатора), чтобы выдерживать короткое замыкание, возникающее в то время, когда зазор оставался ионизированным, или в течение нескольких миллисекунд, пока ток высокой частоты не исчезал.

Искровой разрядник настраивался таким образом, чтобы его пробой происходил при напряжении, которое несколько меньше пикового выходного напряжения трансформатора, чтобы максимизировать напряжение на конденсаторе. Внезапный ток, проходящий через искровой промежуток, вызывает резонанс первичной резонансной цепи на её резонансной частоте. Кольцевая первичная обмотка магнитно соединяет энергию с вторичной обмоткой в течение нескольких радиочастотных циклов, пока вся энергия, которая первоначально была в первичной обмотке, не перенесётся на вторичную. В идеале зазор затем прекращает проведение тока (гашение), захватывая всю энергию в колебательный вторичный контур. Обычно промежуток снова начинает расти, а энергия вторичных передач возвращается к первичной цепи в течение ещё нескольких радиочастотных циклов. Цикл энергии может повторяться несколько раз, пока искровой промежуток окончательно не ослабнет. Как только зазор прекратит проводить ток, трансформатор начнёт заряжать конденсатор. В зависимости от напряжения пробоя искрового промежутка, он может срабатывать много раз на протяжении всего цикла переменного тока.

Более заметная вторичная обмотка с значительно большим количеством витков более тонкой проволоки, чем у вторичной, была расположена для перехвата части магнитного поля первичной обмотки. Вторичная система была сконструирована так, чтобы иметь такую же частоту резонанса, что и первичная, используя только паразитную ёмкость (нежелательная ёмкостная связь) самой обмотки на «землю», а также любую клемму, расположенную в верхней части вторичной обмотки. Нижний конец длинной вторичной обмотки должен быть заземлён.

Применение катушек Тесла

Применение можно разделить на практическое и чисто декоративное. Практическое применение тока катушки Тесла нашли в радиоуправлении, радио и беспроводной передачи энергии для питания различных устройств (например, лампочек). Генератор Теслы обнаружил и неожиданное применение в медицине. Арсен Д’Арсонваль применил токи, создаваемые генератором, для физиотерапевтического воздействия на поверхность кожи и слизистые различных органов человека. Ток проходил по поверхностным слоям кожи и оказывал тонизирующий и оздоровляющий эффект. Также катушки Тесла применяются для работы газоразрядных лапм и обнаружения течи внутри вакуумных систем.

Но гораздо большую распространённость катушки Тесла получили в сфере спецэффектов и декораций, ведь разряды, создающиеся трансформатором Тесла выглядят крайне эффектно и красиво.

Пример работы катушки Тесла можете посмотреть на видео:

Интересно также понаблюдать и за музыкальными свойствами данных катушек, которые достигаются за счёт изменения частоты:

Интересно, что в своё время в 20-м веке пытались продавать катушки Теслы, как эффективный способ защитить вашу машину от угона:
Также подобные катушки используются в различных центрах, чтобы развлечь посетителей и попытаться увлечь молодёжь красотой физических эффектов, а также в аттракционах:

Беспроводное освещение

В 1891 году Тесла усовершенствовал передатчик волн, изобретённый Герцом, который был необходим для радиочастотного снабжения энергией, переделав его в систему освещения, состоящую из газоразрядных ламп.

В этом же году он продемонстрировал в Колумбийском колледже своё изобретение.

Когда мы говорим о том, что освещение беспроводное, не имеются в виду радиоволны, речь идёт об электростатической индукции.

В руках у Теслы две длинные трубки Гейсслера , которые похожи на неоновые лампы.

В 1893 году в Чикаго проходит всемирная выставка, где Тесла демонстрирует своё изобретение. Лампы были не только беспроводными, но и люминесцентными.

В 1894 году новое достижение. Удаётся зажечь фосфорную лампу накаливания в своей лаборатории, используя резонансный метод взаимоиндукции.

Правда широкого коммерческого применения такая лампа найти не смогла, но резонансный метод индуктивной связи сейчас применяется повсеместно в электронике.

Башня Теслы

Тесла не остановился на беспроводной системе освещения и пошёл дальше. Он решил, что можно в принципе не использовать высоковольтные провода для передачи тока и передавать всю электроэнергию посредством воздуха. Для этого он хотел построить огромную экспериментальную установку в Нью-Йорке, известную как башня Теслы или башня Ворденклиф. Позже, проводя свои эксперименты и наблюдения над молниями, Тесла пришёл к ошибочному выводу, что может использовать весь земной шар, чтобы проводить ток.

Одна из страниц патента на башню Теслы

Деньги на строительство от получил от известного в то время финансиста Дж. П. Моргана, которому он сообщил, что башня будет использоваться для трансатлантической беспроводной телефонии и вещания, на чём Морган планировал заработать. По сути это была первая подобная башня в своём роде.

В 1901 году началось строительство башни и продолжалось до 1903 года. Вторую башню-приёмник планировалось построить около Ниагарского водопада. Когда первую башню в  Ворденклифе почти достроили, Морган понял, что беспроводная передача электроэнергии может привести к обрушению всего рынка, в котором он имел вложения (ему принадлежала Ниагарская ГЭС), то он прекратил финансирование проекта Теслы. В мае 1905 года Тесла также потерял свой доход от патентов по истечению срока, поэтому он оказался банкротом и завершить строительство второй башни так и не удалось.

Как устроена башня Теслы

Башня в Ворденклифе представляла из себя огромную катушку Теслы высотой около 60 метров, на верхушки которой была большая медная сфера. Башня генерировала молнии длиной до 40 метров, а гром от высвобождаемой электроэнергии порождал гром, который можно было услышать за 24 километра от башни. Вес башни достигал 55 тонн, а диаметр 21-го метра.

Башня Уорденклифф изнутри

В 1905 году был произведён тестовый пуск, который произвёл шокирующий эффект. В газетах писалось, что Тесла сумел зажечь небо над океаном на тысячи миль. Вокруг же самой башни лошади получали удары током и даже крылья бабочек наэлектризовались до такой степени, что вокруг них можно было видеть «Огни Святого Эльма» (коронный разряд).

К сожалению, башню снесли в 1917-м году.

Изобретение радио и радиоуправления

Тесла демонстрирует свою радиоуправляемую лодку

20-й век крайне богат на различные изобретения и технические новинки. Многие изобретались параллельно в различных вариациях, при этом кто-то патентовал свои изобретения, а кто-то это сделать не мог или не хотел по каким-то причинам. Поэтому достаточно сложно установить, кто же первым изобрёл радио. Так, например, в США считают, что радио изобрели Дэвид Хьюз, Томас Эдисон и Никола Тесла, которые сделали соответствующий технический вклад для этого изобретения; в Германии полагают, что радио изобрёл Генрих Герц, а во Франции — Эдуард Бранли; В Белоруссии в изобретатели радио записывают Якова Наркевича-Иодку; В Бразилии полагают, что изобретателем радио был Ландель де Муру; в Англии — Оливер Джозеф Лоджа; в СССР же общепринятым было считать изобретателем радио Александра Степановича Попова и так далее ещё для многих стран. Гульермо Маркони же следует считать не изобретателем радио, как технологии или законченной системы, а как создателем первой успешной в коммерческом плане реализации системы радио.

Все их патенты и изобретения появлялись в промежутке 1880-1895 годов и все они занимались исследованием радиоволн. Попросту говоря, они все были изобретателями радио в той или иной степени, делая свой вклад в развитие теории передачи информации.

Но что же сделал Тесла? А он сделал тоже не мало. Он описал принципы, по которым можно было передавать радиосигнал на большие расстояния, провёл ряд собственных экспериментов по передаче сигналов, а также создал первую радиоуправляемую лодку, которую продемонстрировал на электротехнической выставке в 1898 году. Правда он не считал, что при помощи радиоволн возможно общение.

Радиоуправляемая лодка Николы Теслы

Одна из страниц патента на радиоуправляемую лодку Николы Тесла

На видео вы можете посмотреть лодку, которую собрали в 2015 году по подобию той, что была у Теслы:

Лодка контролировалась при помощи радиоуправления. Тесла продемонстрировал эту лодку в 1898 году на выставке электротехнике в Мэдисон Сквер Гарден. Там она произвела фурор. Представьте себе людей того времени, которые не понимали, каким образом Тесла управляет лодкой, приказывая ей плыть в то или иное место. Кроме слова «магия» здесь сложно что-то было подобрать для обывателя того времени.

Хотя газетчики того времени сразу начали называть изобретение Теслы «радиоуправляемой торпедой» (видимо, из-за того, что в то время Томас Эдисон пытался изобрести подобную торпеду и продать военным), сам же Тесла не нацеливался на войну. В 1900 году журнал Centure взял интервью у изобретателя, где тот сообщил, что целью его изобретения является попытка создать «искусственный интеллект», так как современные автоматы попросту заимствуют разум человека и откликаются только на его приказы. Тесла полагал, что однажды люди сумеют создать машину со своим собственным разумом. Что же, спустя более чем 100 лет мы пока можем утверждать, что такой машины мы не создали.

Позже во время Второй мировой войны нацисты догадаются использовать радиоуправления для создания дистанционно управляемых танков.

Рекомендуем также интересную статью про современные российские разработки в области боевой робототехники.

Безлопастная турбина Теслы

Турбина Теслы из музея

Эту турбину Тесла запатентовал в 1913 году. Изобретение турбины без лопастей по сути было вынужденным, так как для изготовления турбины с лопастями не было подходящих технологий, да и аэродинамическая теория ещё не была создана, поэтому Тесла решил использовать эффект пограничного слоя, а не давление вещества на лопатки, как сейчас широко распространено в традиционных турбинах.

Устройство турбины Теслы

Часто можно встретить утверждения, что КПД его турбины может теоретически достигать 95%, но на практике на заводах Вестингауза такая турбина показала КПД в районе 20%. Хотя позже различные модификации турбины другими изобретателями доводили КПД до 40% и более.

Путь жидкости в турбине Теслы

Очень хорошо принципы работы турбины Тесла на английском языке объяснены в этом видео:

По состоянию на 2016 год турбина Теслы так и не нашла широкого коммерческого использования с момента своего изобретения. Пока что ей удалось найти узкое применение в насосах. Связано это в первую очередь с тем, что диски внутри турбины сильно деформируются во время работы и это сказывается на общей эффективности применения турбины. Хотя сейчас продолжаются технологические поиски, чтобы решить все возникающие проблемы. Сравнительно недавно вопрос о деформации дисков частично был решён с использованием новых материалов, таких как углеродное волокно.

Клапан Тесла

Труба с клапаном Теслы в разрезе

Данный клапан был изобретён Теслой в 1920 году и почему-то многие даже не слышали об этом интересном изобретении. Суть в том, что этот однонаправленный клапан не имеет подвижных частей. Затор в клапане создаётся за счёт того, что основной поток ветвится и его ответвления направляются обратно, что постепенно замедляет основной поток.

Когда газ или жидкость течёт в прямом направлении, они слегка отклоняют и текут как бы по зигзагу, но не находя большого сопротивления. Можете посмотреть это на видео ниже, где для наглядности в поток добавлены шарики:

Однако, когда поток течёт в обратном направлении, то он ветвится таким образом, что ответвлённый поток направляется против основного, что вызывает сопротивление. И так повторяется на каждом ответвлении, из-за чего поток останавливается. Этот принцип вы можете наблюдать на видео ниже:

Конечно, нужно понимать, что данный клапан не предназначен для того, чтобы быть пробкой для бутылки или что-то в этом роде, так как он плохо работает при низком давлении потока. Однако, стоит начать использовать высокое давление, как соотношение давления между основным и ответвлённым потоком выравниваются.

Тесла изобрёл клапан, когда разрабатывал бесступенчатую турбину. Но так оказалось, что клапан стал самостоятельным изобретением, так как Тесла понял, что турбина лучше взаимодействует с ламинарным потоком, а клапан лучше работает с импульсным.

ПРОДОЛЖЕНИЕ СЛЕДУЕТ …

история возникновения, век и год изобретения

Электричество — это вид энергии, которую не требовалось изобретать, а только обнаружить и изучить. История отдает должное первооткрывателю Бенджамину Франклину, именно его эксперименты помогли установить связь между молнией и электричеством. Хотя на самом деле, правда об открытии электроэнергии намного сложнее, поскольку в ее истории не существует единого определяющего момента, дающего прямой ответ на вопрос, кто изобрёл электричество.

История

То, как люди стали производить, распределять и использовать электроэнергию и устройства, на которых протекают процессы генерации, является кульминацией почти 300 летней истории исследований и разработок электричества.

История открытия

Сегодня ученые считают, что человечество начало использовать электроэнергию намного раньше. Примерно в 600 году до н.э. древние греки обнаружили, что потирание меха на янтаре вызывает притяжение между ними. Это явление демонстрирует статическое электричество, которое полностью описали ученые в 17 веке в пояснениях, как появляется электричество.

Кроме того, исследователи и археологи в 1930-х годах обнаружили горшки с листами меди внутри, и объяснили их происхождение, как древние батареи, предназначенные для получения света в древнеримских местах. Подобные устройства также были найдены в археологических раскопках возле Багдада, а это означает, что древние персы также могли открыть конструкцию ранней формы батарей.

Кто изобрёл электричество

К 17 веку было сделано много открытий, связанных с электричеством, таких как изобретение раннего электростатического генератора, разграничение положительных и отрицательных зарядов и классификация материалов в качестве проводников или изоляторов.

Важно! В 1600 году английский врач Уильям Гилберт использовал латинское слово «electricus», чтобы описать силу, которую некоторые вещества создают, если их потереть друг с другом. Чуть позже другой английский ученый Томас Браун, написал несколько книг с использованием термина «электричество», чтобы описать свои исследования, основанные на работе Гилберта.

Кто изобрел электричество

Изобретение электричества в 19 веке стало возможным благодаря открытиям целой плеяды великих ученых. В 1752 году Бен Франклин провел свой эксперимент с воздушным змеем, ключом и штормом. Это просто доказало, что молния и крошечные электрические искры — это одно и то же.

Эксперимент Бена Франклина

Итальянский физик Алессандро Вольта обнаружил, что определенные химические реакции могут производить электричество, а в 1800 году он создал гальванический элемент, раннюю электрическую батарею, вырабатывающую постоянный электроток. Он также выполнил первую передачу тока на расстояние, связав положительно и отрицательно заряженные разъемы и создав между ними напряжение. Поэтому многие историки считают, что 1800 — это год изобретения электричества.

В 1831 году электричество стало возможно использовать в технике, когда Майкл Фарадей создал электродинамо, решившее на практике проблему генерирования постоянного электротока. Довольно простое изобретение с использованием магнита, перемещавшегося внутри катушки из медного провода, создавал небольшой ток, протекающий через провод. Оно помогло американцу Томасу Эдисону и британскому ученому Джозефу Свону, каждому в отдельности, примерно в одно время в 1878 году изобрести лампу накаливания. Сами лампочки для освещения были изобретены другими исследователями, но лампа накаливания была первым практичным устройством, дававшем свет в течение нескольких часов подряд.

Русский ученый и инженер А. Н. Лодыгин

В 1800-х и в начале 1900-х годов, сербско-американский инженер, изобретатель и мастер электротехники Никола Тесла стал одним из авторов зарождения коммерческого электричества. Он работал совместно с Эдисоном, сделал много революционных разработок в области электромагнетизма и хорошо известен своей работой с двигателями переменного тока и многофазной системой распределения энергии.

Обратите внимание! Русский ученый и инженер А. Н. Лодыгин изобрел и запатентовал в 1874 г. лампу освещения, где функцию нити накаливания выполнял угольный стержень, размещенный в вакуумной среде сосуда, изготовленного из стекла. Это были первые лампочки освещения в России. Только через 16 лет в 1890-х гг. он применил нить из тугоплавкого металла — вольфрама.

Однозначно нельзя заявить в каком году появился свет. Несмотря на то, что многие историки считают что лампочка была изобретена американцем Эдисоном, тем не менее первая лампа с платиновой нитью накаливания в вакуумном стеклянном сосуде была изобретена в 1840 изобретателем из Англии Де ла Рю.

Дополнительная информация. Российскому ученому П. Н. Яблочкову россияне были благодарны за возникновение электродуговой лампы и хотя ресурс ее работы не превышал 4 часов, осветительный прибор широко использовался на территории Зимнего дворца почти 5 лет.

Электродуговая лампа П.Н.Яблочкова

Кто является основоположниками науки об электричестве

Вот список некоторых известных ученых, сделавших свой вклад в развитии электроэнергии.

Французский физик Андре Мари Ампер

Основоположниками науки об электричестве являются:

  1. Французский физик Андре Мари Ампер, 1775-1836, работавший по электромагнетизму. Единица тока в системе СИ — ампер, названа в его честь.
  2. Французский физик Чарльз Августин из Кулона, 1736-1806, который был пионером в исследованиях трения и вязкости, распределения заряда на поверхностях и законов электрической и магнитной силы. Его именем названа единица заряда в системе СИ — кулон и закон Кулона.
  3. Итальянский физик Алессандро Вольта, 1745-1827, тот кто изобрел источник постоянного тока, награжден Нобелевской премией по физике 1921 года, в системе СИ единица напряжения — вольт, названа в его честь.
  4. Георг Симон Ом, 1789-1854, немецкий физик, первооткрыватель, оказавший влияние на развитие теории электричества, в частности закона Ома. В системе СИ единица сопротивления — ом, названа в его честь.
  5. Густав Роберт Кирхгоф, 1824-1887, немецкий физик, внесший вклад в фундаментальное понимание электрических цепей, известен своими двумя законами по теории цепей.
  6. Генрих Герц, 1857-1894, немецкий физик, демонстрирующий существование электромагнитных волн. В системе СИ единица частоты — Герц названа в его честь.
  7. Джеймс Клерк Максвелл,1831-1879, шотландский математик и физик, сформулировал систему уравнений об основных законах электричества и магнетизма, названную уравнениями Максвелла.
  8. Майкл Фарадей, 1791-1867, английский химик и физик, основоположник закона индукции. Один из лучших экспериментаторов в истории науки, его обычно считают отцом электротехники. Единица емкости в системе СИ — постоянная Фарадея, названа в его честь.
  9. Томас Эдисон, 1847-1931, американский изобретатель, имеющий более 1000 патентов, наиболее известен разработкой лампы накаливания.

Томас Эдисон

Теории и законы электричества

Общие законы, регулирующие электричество, немногочисленны и просты и применяются неограниченным количеством вариантов.

Закон Ома

Закон Ома — ток, проходящий через проводник между двумя точками, прямо пропорционален напряжению между ними.

I = V / R или V = IR или R = V / I

Где:

I — ток через провод в амперах;

V — напряжение, измеренное на проводнике в вольтах;

R — сопротивление провода в Ом.

В частности, он также гласит, что R в этом отношении постоянна, не зависит от тока.

Закон Ватта, подобно закону Ома, подтверждает связь между мощностью (ваттами), током и напряжением: P = VI или P = I 2 R.

Закон Кирхгофа (KCL) доказывает, что суммарный ток или заряд, поступающий в соединение или узел, в точности равен заряду, покидающему узел, поскольку ему некуда деться, кроме как уйти, поскольку внутри узла заряд не может быть поглощён. Другими словами, алгебраическая сумма всех токов, входящих и выходящих из узла, должна быть равна нулю.

Закон Фарадея гласит о том, что индуцированная электродвижущая сила в любой замкнутой цепи равна отрицательному значению временной скорости изменения магнитного потока, заключенного в ней.

Закон Ленца утверждает, что направление тока, индуцированного в проводе изменяющимся магнитным полем по фарадеевскому закону, создаст магнитное поле, противостоящее изменению, которое его вызвало. Проще говоря, размер эдс, индуцированной в цепи, пропорциональна скорости изменения потока.

Закон Гаусса гласит, что суммарный электрический поток с замкнутой поверхности равен вложенному заряду, деленному на диэлектрическую проницаемость.

Какое было первое электрическое изобретение

В 1731 году в «Философских трудах», издании «Королевского общества», появилась статья, сделавшая гигантский скачок вперед для молодой электротехники. Ее автор английский ученый Стивен Грей (1670-1736), проводя эксперименты по передаче электрического тока на расстояние, случайно обнаружил, что не все материалы обладают способностью передавать электричество одинаково.

Создание Лейденской банки

Далее произошло создание аккумулятора — «Лейденской банки», устройства для хранения статического электричества. Процесс был случайно обнаружен и исследован голландским физиком Питером Ван Мюссенбруком из Лейденского университета в 1746 году и независимо от него немецким изобретателем Эвальдом Георгом фон Клейстом в 1745 году. Примерно в этот же период русские учёные Г. В. Рихман и М. В. Ломоносов проводили работы по изучению атмосферного электричества.

Когда появилось электричество на территории России

Практически электрическое освещение в России появилось в 1879 на Литейном мосте в Петербурге, а официально — в 1880, с созданием 1-го электротехнического отдела, занимавшегося внедрением электричества в экономику государства. В 1881 Царское село было освещено электрическими фонарями. Лампы накаливания в Кремле в 1881 г осветили вступления на трон Александра III.

Энергетика России 2018

Прообраз российской энергосистемы был создан в 1886 г с основанием промышленно-коммерческого общества. В его планы входила электрификация населенных пунктов: улиц, заводов, магазинов и жилых домов. Первая крупная электрическая станция начала свою работу в 1888 г. в Зимнем дворце и на протяжении 15 лет считалась самой мощной в Европе. К 1917 г. в столице уже было электрифицировано около 30% домов. Далее развитие энергетики в СССР шло по плану ГОЭЛРО принятого 22 декабря 1920 года. Этот день до сих пор отмечается в России и странах СНГ, как День энергетика. План во многом позаимствовал наработки российских специалистов 1916 года. Благодаря ему была увеличена выработка электроэнергии, а к 1932 г. она возросла с 2 до 13,5 млрд кВт.

В 1960 г. уровень выработки электроэнергии составил 197.0 млрд. кВт-часов, и далее он продолжал неуклонно расти. Ежегодно в стране вводились новые энергетические мощности: ГРЭС, ТЭЦ, КЭС, ГЭС и АЭС. Суммарная их мощность к концу 1980 составила 266.7 тыс. МВт, а выработка электрической энергии в СССР достигла рекордных 1293.9 млрд. кВт∙ч.

После развала СССР, Россия продолжала наращивать темп развития энергетики, по результатам 2018 года выработка электроэнергии в стране составила −1091 млрд. кВт∙ч, что позволило стране войти в четверку мировых лидеров после Китая, США и Индии.

«Какие выдающиеся изобретения принадлежат Никола Тесла?» – Яндекс.Знатоки

Переменный ток. С 1889 года Никола Тесла приступил к исследованиям токов высокой частоты и высоких напряжений. Изобрёл первые образцы электромеханических генераторов ВЧ (в том числе индукторного типа) и высокочастотный трансформатор (трансформатор Теслы, 1891), создав тем самым предпосылки для развития новой отрасли электротехники — техники ВЧ. В ходе исследований токов высокой частоты Тесла уделял внимание и вопросам безопасности. Экспериментируя на своём теле, он изучал влияние переменных токов различной частоты и силы на человеческий организм. Многие правила, впервые разработанные Теслой, вошли в современные основы техники безопасности при работе с ВЧ-токами. Он обнаружил, что при частоте тока свыше 700 Гц электрический ток протекает по поверхности тела, не нанося вреда тканям организма. Электротехнические аппараты, разработанные Теслой для медицинских исследований, получили широкое распространение в мире. Эксперименты с высокочастотными токами большого напряжения привели изобретателя к открытию способа очистки загрязнённых поверхностей. Аналогичное воздействие токов на кожу показало, что таким образом возможно удалять мелкую сыпь, очищать поры и убивать микробов. Данный метод используется в современной электротерапии.

Теория полей. 12 октября 1887 года Тесла дал строгое научное описание сути явления вращающегося магнитного поля. 1 мая 1888 года Тесла получил свои основные патенты на изобретение многофазных электрических машин (в том числе асинхронного электродвигателя) и системы передачи электроэнергии посредством многофазного переменного тока. С использованием двухфазной системы, которую он считал наиболее экономичной, в США был пущен ряд промышленных электроустановок, в том числе Ниагарская ГЭС (1895), крупнейшая в те годы.

Радио. Тесла одним из первых запатентовал способ надёжного получения токов, которые могут быть использованы в радиосвязи. Патент, выданный в США 10 марта 1891 года, описывал «Метод управления дуговыми лампами» , в котором генератор переменного тока производил высокочастотные (по меркам того времени) колебания тока порядка 10 000 Гц. Запатентованной инновацией стал метод подавления звука, производимого дуговой лампой под воздействием переменного или пульсирующего тока, для чего Тесла придумал использовать частоты, находящиеся за рамками восприятия человеческого слуха. По современной классификации генератор переменного тока работал в интервале очень низких радиочастот. В 1891 году на публичной лекции Тесла описал и продемонстрировал принципы радиосвязи. В 1893 году вплотную занялся вопросами беспроволочной связи и изобрёл мачтовую антенну.

Резонанс. В одном из научных журналов Тесла рассказывал об опытах с механическим осциллятором, настроив который на резонансную частоту любого предмета, его можно разрушить. В статье Тесла говорил, что он подсоединил прибор к одной из балок дома, через некоторое время дом стал трястись, началось небольшое землетрясение. Отключить устройство было невозможно, поэтому Тесла взял молоток и разбил изобретение. Приехавшим пожарным и полицейским Тесла сказал, что это было природное землетрясение, своим помощникам он велел молчать об этом случае. Катушки Тесла до сих пор иногда используются именно для получения длинных искровых разрядов, напоминающих молнию.