Расширяющаяся вселенная – Пять вопросов о расширении Вселенной, которые вы стеснялись задать (6 фото)

Расширяющаяся Вселенная

Наше Солнце и ближайшие к нему звезды составляют часть обширного звездного скопления, называемого нашей Галактикой, или Млечным Путем. Долгое время считалось, что это и есть вся Вселенная. И лишь в 1924 г. американский астроном Эдвин Хаббл показал, что наша Галактика не единственная. Существует множество других галактик, разделенных гигантскими участками пустого пространства. Чтобы доказать это, Хабблу пришлось измерить расстояния до других галактик. Мы можем определять расстояния до ближайших звезд, фиксируя изменения их положения на небесном своде по мере обращения Земли вокруг Солнца. Но, в отличие от ближних звезд, другие галактики находятся столь далеко, что выглядят неподвижными. Поэтому Хаббл вынужден был использовать косвенные методы измерения расстояний.

В настоящее время видимая яркость звезд зависит от двух факторов — фактической светимости и удаленности от Земли. Для наиболее близких звезд мы можем измерить и видимую яркость, и расстояние, что позволяет вычислить их светимость. И наоборот, зная светимость звезд в других галактиках, мы можем вычислить расстояние до них, измерив их яркость. Хаббл утверждал, что определенные типы звезд всегда имеют одну и ту же светимость в тех случаях, когда они расположены от нас на достаточно близких расстояниях, позволяющих провести измерения. Обнаружив подобные звезды в другой галактике, мы можем предполагать, что они имеют ту же светимость. Это позволит нам вычислить расстояния до иной галактики. Если мы проделаем это для нескольких звезд в какой-то галактике и полученные значения совпадут, то можно быть вполне уверенным в полученных нами результатах. Подобным образом Эдвин Хаббл сумел вычислить расстояния до девяти разных галактик.

Сегодня мы знаем, что наша Галактика лишь одна из нескольких сотен миллиардов наблюдаемых в современные телескопы галактик, каждая из которых может содержать сотни миллиардов звезд. Мы живем в Галактике, поперечник которой около ста тысяч световых лет. Она медленно вращается, и звезды в ее спиральных рукавах делают примерно один оборот вокруг ее центра за сто миллионов лет. Наше Солнце представляет собой самую обычную, средних размеров желтую звезду близ внешнего края одного из спиральных рукавов. Несомненно, мы прошли долгий путь со времен Аристотеля и Птолемея, когда Земля считалась центром Вселенной.

Звезды так далеки от нас, что кажутся всего лишь крошечными светящимися точками. Мы не можем различить их размер или форму. Каким же образом ученые их классифицируют? Для подавляющего большинства звезд надежно определяется только один параметр, который можно наблюдать, — цвет их
излучения. Ньютон обнаружил, что пропущенный через призму солнечный свет распадается на составляющий его набор цветов (спектр), такой же, как у радуги. Сфокусировав телескоп на определенной звезде или галактике, можно наблюдать спектр света данного объекта. Разные звезды обладают разными спектрами, но относительная яркость отдельных цветов спектра практически всегда соответствует той, которую можно обнаружить в свечении сильно раскаленных объектов. Это позволяет по спектру звезды вычислить ее температуру. Более того, в спектре звезды можно обнаружить отсутствие некоторых специфических цветов, причем цвета эти у каждой звезды свои. Известно, что каждый химический элемент поглощает характерный именно для него набор цветов. Таким образом, выявляя линии, отсутствующие в спектре излучения звезды, мы можем точно определять, какие химические элементы содержатся в ее внешнем слое.

Приступив в 1920-х гг. к исследованию спектров звезд в других галактиках, астрономы обнаружили поразительный факт: в них отсутствовал тот же самый набор цветовых линий, что и у звезд нашей Галактики, но все линии были смещены на одинаковую величину в направлении красной части спектра. Единственное разумное объяснение заключалось в том, что галактики удаляются от нас и это вызывает понижение частоты световых волн (так называемое красное смещение) вследствие эффекта Доплера.

Прислушайтесь к шуму машин на шоссе. По мере того как автомобиль приближается к вам, звук его двигателя становится все выше сообразно частоте звуковых волн и делается ниже, когда машина удаляется. То же происходит и со световыми или радиоволнами. Действительно, эффектом Доплера пользуется дорожная полиция, определяя скорость автомобиля по изменению частоты посылаемого и принимаемого радиосигнала (сдвиг частоты при этом зависит от скорости отражающего объекта, то есть автомобиля).

После того как Хаббл открыл существование других галактик, он занялся составлением каталога расстояний до них и наблюдениями их спектров. В то время многие полагали, что галактики двигаются совершенно хаотически и, следовательно, в одинаковом количестве их должны обнаруживаться спектры, имеющие как красное смещение, так и синее. Каково же было общее удивление, когда обнаружилось, что все галактики демонстрируют красное смещение. Каждая из них удаляется от нас. Еще более поразительными оказались результаты, опубликованные Хабблом в 1929 г.: даже величина красного смещения у каждой из галактик не случайна, но пропорциональна расстоянию между галактикой и Солнечной системой. Другими словами, чем дальше от нас галактика, тем быстрее она удаляется.

Это означало, что Вселенная никак не может быть стационарной, как принято было думать ранее, на деле она расширяется. Расстояния между галактиками постоянно растут. Открытие того, что Вселенная расширяется, стало одной из главных интеллектуальных революций XX в. Оглядываясь в прошлое, легко удивляться, почему никто не додумался до этого раньше. Ньютону и прочим следовало бы понять, что стационарная Вселенная быстро схлопнулась бы под влиянием тяготения. Но представьте, что Вселенная не стационарна, а расширяется. При малых скоростях расширения сила тяготения рано или поздно остановила бы его и положила начало сжатию. Однако если бы скорость расширения превосходила некоторое критическое значение, то силы тяготения было бы недостаточно, чтобы его остановить и Вселенная расширялась бы вечно. Нечто подобное происходит при запуске ракеты

с поверхности Земли. Если ракета не разовьет нужной скорости, сила тяготения остановит ее и она начнет падать назад. С другой стороны, при скорости выше некоторой критической величины (около 11,2 км/с) силы тяготения не смогут удерживать ракету возле Земли, и она будет вечно удаляться от нашей планеты.

Подобное поведение Вселенной можно было предсказать на основе ньютоновского закона всемирного тяготения еще в XIX в., и в XVIII в., даже в конце XVII в. Однако вера в стационарную Вселенную была столь незыблема, что продержалась до начала XX столетия. Сам Эйнштейн в 1915 г., когда он сформулировал общую теорию относительности, сохранял убежденность в стационарности Вселенной. Не в силах рас-статься с этой идеей, он даже модифицировал свою теорию, введя в уравнения так называемую космологическую постоянную. Эта величина характеризовала некую силу антигравитации, в отличие от всех других физических сил не исходящую из конкретного источника, а «встроенную» в саму ткань пространства-времени. Космологическая постоянная придавала пространству-времени внутренне присущую тенденцию к расширению, и это могло быть сделано для уравновешивания взаимного притяжения всей присутствующей во Вселенной материи, то есть ради стационарности Вселенной. Похоже, в те годы лишь один человек готов был принять общую теорию относительности за чистую монету. Пока Эйнштейн и другие физики искали путь, позволяющий обойти нестационарносгь Вселенной, которая вытекала из общей теории относительности, российский физик Александр Фридман вместо этого предложил свое объяснение.

МОДЕЛИ ФРИДМАНА

Уравнения общей теории относительности, описывающие эволюцию Вселенной, слишком сложны, чтобы решить их в деталях.

А потому Фридман предложил вместо этого принять два простых допущения:

(1) Вселенная выглядит совершенно одинаково во всех направлениях;
(2) это условие справедливо для всех ее точек.

На основе общей теории относительности и этих двух простых предположений Фридману удалось показать, что мы не должны ожидать от Вселенной стационарности. На самом деле он в 1922 г. точно предсказал то, что Эдвин Хаббл открыл несколько лет спустя.

Предположение о том, что Вселенная выглядит одинаковой во всех направлениях, конечно же, не совсем отвечает реальности. Например, звезды нашей Галактики составляют на ночном небе отчетливо видимую светящуюся полосу, называемую Млечным Путем. Но если мы обратим свой взгляд на далекие галактики, число их, наблюдаемое в разных на-правлениях, окажется примерно одинаковым. Так что Все-ленная, похоже, сравнительно однородна во всех направлениях, если рассматривать ее в космических масштабах, сопоставимых с расстояниями между галактиками.

Долгое время это считалось достаточным обоснованием предположения Фридмана — грубым приближением к реальной Вселенной. Однако сравнительно недавно счастливый случай доказал, что предположение Фридмана описывает наш мир с замечательной точностью. В 1965 г. американские физики Арно Пензиас и Роберт Уилсон работали в лаборатории фирмы «Белл» в штате Нью-Джерси над сверхчувствительным приемником микроволнового излучения для связи с орбитальными искусственными спутниками. Их сильно беспокоило, что приемник улавливает больше шума, чем следовало бы, и что шум этот не исходит из какого-либо определенного направления. Поиск причины шума они начали с того, что очистили свою большую рупорную антенну от скопившегося внутри нее птичьего помета и исключили возможные неисправности. Им было известно, что любой шум атмосферного происхождения усиливается, когда антенна направлена не строго вертикально вверх, потому что атмосфера выглядит толще, если смотреть под углом к вертикали.

Дополнительный шум оставался одинаковым независимо от того, в каком направлении поворачивали антенну, а потому источник шума должен был находиться за пределами атмосферы. Шум оставался неизменным и днем и ночью на протяжении всего года, несмотря на вращение Земли вокруг ее оси и обращение вокруг Солнца. Это указывало, что источник излучения находится за пределами Солнечной системы и даже вне нашей Галактики, иначе интенсивность сигнала менялась бы по мере того, как в соответствии с движением Земли антенна оказывалась обращенной в разных направлениях.

Действительно, мы теперь знаем, что излучение по пути к нам должно было пересечь всю обозримую Вселенную. Коль скоро оно одинаково в разных направлениях, то и Вселенная должна быть однородна во всех направлениях (по крайней мере, в больших масштабах). Нам известно, что в каком бы направлении мы ни обратили свой взгляд, колебания «фонового шума» космического излучения не превышают 1/10 000. Так что Пензиас и Уилсон случайно натолкнулись на поразительно точное подтверждение первого предположения Фридмана.

Примерно в то же время два других американских физика из расположенного неподалеку, в том же штате Нью-Джерси, Принстонского университета, Боб Дик и Джим Пиблс, тоже заинтересовались космическим микроволновым излучением. Они работали над гипотезой Джорджа (Георгия) Гамова, который некогда был студентом Александра Фридмана, о том, что на самой ранней стадии развития Вселенная была исключительно плотной и горячей, нагретой до «белого каления». Дик и Пиблс пришли к выводу, что мы все еще можем наблюдать ее прошлое свечение, поскольку свет из самых далеких частей ранней Вселенной только-только достигает Земли. Однако вследствие расширения Вселенной этот свет, по-видимому, претерпел столь большое красное смещение, что теперь должен восприниматься нами в виде микроволнового излучения. Дик и Пиблс как раз вели поиски такого излучения, когда Пензиас и Уилсон, прослышав об их работе, поняли, что уже нашли искомое. За это открытие Пензиас и Уилсон были удостоены Нобелевской премии по физике 1978 г., что кажется несколько несправедливым по отношению к Дику и Пиблсу.

На первый взгляд, эти доказательства того, что Вселенная выглядит одинаково во всех направлениях, заставляют предположить, что Земля занимает какое-то особое место во Вселенной. Например, можно вообразить, что, коль скоро все галактики удаляются от нас, мы находимся в самом центре космоса. Имеется, однако, альтернативное объяснение: Вселенная может выглядеть одинаково во всех направлениях и из любой другой галактики. Таково, как уже упоминалось, было второе предположение Фридмана.

У нас нет никаких доказательств, подтверждающих или опровергающих это предположение. Мы принимаем его на веру лишь из скромности. Было бы в высшей степени удивительно, если бы Вселенная выглядела одинаковой во всех направлениях вокруг нас, но не вокруг любой другой точки. В модели Фридмана все галактики удаляются друг от друга. Представьте воздушный шарик, на поверхности которого нарисованы пятнышки. При надувании шарика расстояние между любыми двумя пятнышками увеличивается, однако ни одно из них нельзя называть центром расширения. Более того, чем дальше расходятся пятнышки, тем быстрее они удаляются друг от друга. Сходным образом в модели Фридмана скорость разбегания любых двух галактик пропорциональна расстоянию между ними. Отсюда следует, что величина красного смещения галактик должна быть прямо пропорциональна их удаленности от Земли, что и обнаружил Хаббл.

Несмотря на то что модель Фридмана была удачной и оказалась соответствующей результатам наблюдений Хаббла, она долгое время оставалась почти неизвестной на Западе. О ней узнали лишь после того, как в 1935 г. американский физик Говард Робертсон и английский математик Артур Уокер разработали сходные модели для объяснения открытого Хабблом однородного расширения Вселенной.

Хотя Фридман предложил только одну модель, на основе двух его фундаментальных предположений можно построить три разные модели. В первой из них (именно ее и сформулировал Фридман) расширение происходит настолько медленно, что гравитационное притяжение между галактиками постепенно еще больше замедляет его, а потом и останавливает. Галактики тогда начинают двигаться друг к другу, и Вселенная сжимается. Расстояние между двумя соседними галактиками сначала возрастает от нуля до некоторого максимума, а затем вновь уменьшается до нуля.

Во втором решении скорость расширения столь велика, что тяготение никогда не может его остановить, хотя и несколько замедляет. Разделение соседних галактик в этой модели начинается с нулевого расстояния, а затем они разбегаются с постоянной скоростью. Наконец, существует третье решение, в котором скорость расширения Вселенной достаточна лишь для того, чтобы предотвратить обратное сжатие, или коллапс. В этом случае разделение также начинается с нуля и возрастает бесконечно. Однако скорость разлета постоянно уменьшается, хотя и никогда не достигает нуля.

Замечательной особенностью первого типа модели Фридмана является то, что Вселенная не бесконечна в пространстве, но пространство не имеет границ. Гравитация в этом случае настолько сильна, что пространство искривляется, замыкаясь само на себя наподобие поверхности Земли. Путешествующий по земной поверхности в одном направлении никогда не встречает непреодолимого препятствия и не рискует свалиться с «края Земли», а попросту возвращается в исходную точку. Таково пространство в первой модели Фридмана, но вместо присущих земной поверхности двух измерений оно имеет три. Четвертое измерение — время — обладает конечной протяженностью, но его можно уподобить линии с двумя краями или границами, началом и концом. Далее мы покажем, что комбинация положений общей теории относительности и принципа неопределенности квантовой механики допускает конечность пространства и времени при одновременном отсутствии у них каких-либо пределов или границ. Идея о космическом страннике, обогнувшем Вселенную и вернувшемся в исходную точку, хороша для фантастических рассказов, однако не имеет практической ценности, поскольку — и это можно доказать — Вселенная сократится до нулевых размеров, прежде чем путешественник вернется к старту. Для того чтобы успеть вернуться в начальную точку раньше, чем Вселенная перестанет существовать, этот бедолага должен перемещаться быстрее света, чего, увы, не допускают известные нам законы природы.

Какая же модель Фридмана соответствует нашей Вселенной? Остановится ли расширение Вселенной, уступив место сжатию, или будет продолжаться вечно? Чтобы ответить на этот вопрос, нам необходимо знать скорость расширения Вселенной и ее среднюю плотность в настоящее время. Если эта плотность меньше некоторого критического значения, определяемого скоростью расширения, гравитационное притяжение будет слишком слабым для того, чтобы остановить разбегание галактик. Если же плотность больше критического значения, гравитация рано или поздно остановит расширение и начнется обратное сжатие.

Мы можем определить текущую скорость расширения путем измерения скоростей, с которыми другие галактики удаляются от нас, используя эффект Доплера. Это можно проделать с высокой точностью. Однако расстояния до галактик известны не очень хорошо, поскольку мы измеряем их косвенными методами. Нам известно одно: Вселенная расширяется примерно на 5-10 % за каждый миллиард лет. Впрочем, наши оценки нынешней плотности вещества во Вселенной грешат еще большей неопределенностью.

Если мы суммируем массу всех видимых нам звезд нашей и других галактик, итог будет меньше одной сотой того значения, которое необходимо для остановки расширения Вселенной даже при самой низкой его скорости. Впрочем, нам известно, что в нашей и других галактиках содержится большое количество темной материи, которую мы не можем наблюдать непосредственно, влияние которой, однако, обнаруживается через ее гравитационное воздействие на орбиты звезд и галактический газ. Более того, большинство галактик образуют гигантские скопления, и можно предположить присутствие еще большего количества темной материи между галактиками в этих скоплениях по тому эффекту, которое она оказывает на движение галактик. Но, даже добавив всю эту темную материю, мы получим одну десятую того, что необходимо для остановки расширения. Впрочем, возможно, существуют иные, пока не выявленные нами формы материи, которые могли бы поднять среднюю плотность Вселенной до критического значения, способного остановить расширение.

Таким образом, существующее свидетельство предполагает, что Вселенная, по-видимому, будет расширяться вечно. Но не стоит делать ставку на это. Мы можем быть уверены только в том, что если Вселенной суждено схлопнуться, произойдет это не раньше чем через десятки миллиардов лет, поскольку расширялась она как минимум на протяжении такого же временного промежутка. Так что не стоит беспокоиться раньше срока. Если мы не сумеем расселиться за пределами Солнечной системы, человечество погибнет задолго до того вместе с нашей звездой, Солнцем.

БОЛЬШОЙ ВЗРЫВ

Характерной чертой всех решений, вытекающих из модели Фридмана, является то, что в соответствии с ними в далеком прошлом, 10 или 20 млрд лет назад, расстояние между соседними галактиками во Вселенной должно было равняться нулю. В этот момент времени, получивший название Большого Взрыва, плотность Вселенной и кривизна пространства-времени были бесконечно большими. Это означает, что общая теория относительности, на которой основаны все решения модели Фридмана, предсказывает существование во Вселенной особой, сингулярной точки.

Все наши научные теории построены на предположении, что пространство-время является гладким и почти плоским, так что все они разбиваются о специфичность (сингулярность) Большого Взрыва, где кривизна пространства-времени бесконечна. Это означает, что, если какие-то события и происходили до Большого Взрыва, их нельзя использовать для установления того, что происходило после, потому что всякая предсказуемость в момент Большого Взрыва была нарушена. Соответственно, зная только то, что происходило после Большого Взрыва, мы не можем установить, что происходило до него. Применительно к нам все события до Большого Взрыва не имеют никаких последствий, а потому не могут быть частью научной модели Вселенной. Мы должны исключить их из модели и сказать, что время имело началом Большой Взрыв.

Многим не нравится идея о том, что время имеет начало, вероятно, потому, что она отдает божественным вмешательством. (С другой стороны, Католическая церковь ухватилась за модель Большого Взрыва и в 1951 г. официально провозгласила, что эта модель соответствует Библии.) Предпринимались попытки избежать вывода, что Большой Взрыв вообще был. Самую широкую поддержку получила теория стационарной Вселенной. Предложили ее в 1948 г. бежавшие из оккупированной нацистами Австрии Герман Бонди и Томас Голд совместно с британцем Фредом Хойлом, который в годы войны работал вместе с ними над усовершенствованием радаров. Их идея состояла в том, что, по мере того как галактики разбегаются, в пространстве между ними из вновь образующейся материи постоянно формируются новые галактики. Потому-то Вселенная и выглядит примерно одинаковой во все времена, а также из любой точки пространства.

Теория стационарной Вселенной требовала такого изменения общей теории относительности, которое допускало бы постоянное образование новой материи, но скорость ее образования была настолько низкой — около одной элементарной частицы на кубический километр в год, — что идея Бонди, Голда и Хойла не вступала в противоречие с опытными данными. Их теория была «добротной», то есть достаточно простой и предлагающей ясные предсказания, которые могут быть проверены экспериментально. Одно из таких предсказаний заключалось в том, что число галактик или сходных с ними объектов в любом данном объеме пространства будет одним и тем же, куда бы и когда бы мы ни взглянули во Вселенной.

В конце 1950-х — начале 1960-х гг. группа астрономов из Кембриджа, возглавляемая Мартином Райлом, исследовала источники радиоизлучения в космическом пространстве. Выяснилось, что большая часть таких источников должна лежать за пределами нашей Галактики и что слабых среди них гораздо больше, чем сильных. Слабые источники были признаны более удаленными, а сильные — более близкими. Очевидным стало и другое: число близких источников, приходящееся на единицу объема, меньше, чем дальних.

Это могло означать, что мы располагаемся в центре обширного района, где плотность источников радиоизлучения значительно ниже, чем в остальной Вселенной. Или то, что в прошлом, когда радиоволны только начинали свой путь к нам, источников излучения было гораздо больше, чем сейчас. И первое и второе объяснения противоречили теории стационарной Вселенной. Более того, обнаруженное Пензиасом и Уилсоном в 1965 г. микроволновое излучение также свидетельствовало, что когда-то в прошлом Вселенная должна была иметь гораздо большую плотность. Так что теорию стационарной Вселенной похоронили, пусть и не без сожаления.

Еще одну попытку обойти вывод о том, что Большой Взрыв был и время имеет начало, предприняли в 1963 г. советские ученые Евгений Лифшиц и Исаак Халатников. Они предположили, что Большой Взрыв может представлять собой некую специфическую особенность моделей Фридмана, которые, в конце концов, являются всего лишь приближением к реальной Вселенной. Возможно, из всех моделей, приближенно описывающих реальную Вселенную, лишь модели Фридмана содержат сингулярность Большого Взрыва. В этих моделях галактики разбегаются в космическом пространстве по прямым линиям.

Поэтому неудивительно, что когда-то в прошлом все они находились в одной точке. В реальной Вселенной, однако, галактики разбегаются не по прямым, а по чуть искривленным траекториям. Так что на исходной позиции они располагались не в одной геометрической точке, а просто очень близко друг к другу. Поэтому представляется вероятным, что современная расширяющаяся Вселенная возникла не из сингулярности Большого Взрыва, а из более ранней фазы сжатия; при коллапсе Вселенной не все частицы должны были обязательно столкнуться друг с другом, некоторые из них могли избежать прямого столкновения и разлететься, создав наблюдаемую нами ныне картину расширения Вселенной. Можно ли тогда говорить, что реальная Вселенная началась с Большого Взрыва?

Лифшиц и Халатников изучили модели Вселенной, приближенно похожие на фридмановские, но принимавшие в расчет неоднородности и случайное распределение скоростей галактик в реальной Вселенной. Они показали, что такие модели тоже могут начинаться с Большого Взрыва, даже если галактики не разбегаются строго по прямым линиям. Однако Лифшиц и Халатников утверждали, что такое возможно только в отдельных определенных моделях, где все галактики движутся прямолинейно.

Поскольку среди моделей, подобных фридмановским, гораздо больше тех, которые не содержат сингулярности Большого Взрыва, чем тех, что ее содержат, рассуждали ученые, мы должны заключить, что вероятность Большого Взрыва крайне низка. Однако в дальнейшем им пришлось признать, что класс моделей, подобных фридмановским, которые содержат сингулярности и в которых галактики не должны двигаться каким-то особым образом, гораздо обширнее. И в 1970 г. они вообще отказались от своей гипотезы.

Работа, проделанная Лифшицем и Халатниковым, имела ценность, потому что показала: Вселенная могла иметь сингулярность — Большой Взрыв, — если общая теория относительности верна. Однако они не разрешили жизненно важного вопроса: предсказывает ли общая теория относительности, что у нашей Вселенной должен был быть Большой Взрыв, начало времени? Ответ на это дал совершенно иной подход, предложенный впервые английским физиком Роджером Пенроузом в 1965 г. Пенроуз использовал поведение так называемых световых конусов в теории относительности и тот факт, что гравитация всегда вызывает притяжение, чтобы показать, что звезды, переживающие коллапс под воздействием собственного тяготения, заключены в пределах области, чьи границы сжимаются до нулевых размеров. Это означает, что все вещество звезды стягивается в одну точку нулевого объема, так что плотность материи и кривизна пространства-времени становятся бесконечными. Другими словами, налицо сингулярность, содержащаяся в области пространства-времени, известной как черная дыра.

На первый взгляд, выводы Пенроуза ничего не говорили о том, существовала ли в прошлом сингулярность Большого Взрыва Однако в то самое время, когда Пенроуз вывел свою теорему, я, тогда аспирант, отчаянно искал математическую задачу, которая позволила бы мне завершить диссертацию. Я понял, что, если обратить вспять направление времени в теореме Пенроуза, чтобы коллапс сменился расширением, условия теоремы останутся прежними, коль скоро нынешняя Вселенная приближенно соответствует фридмановской модели в больших масштабах. Из теоремы Пенроуза вытекало, что коллапс любой звезды заканчивается сингулярностью, а мой пример с обращением времени доказывал, что любая фридмановская расширяющаяся Вселенная должна возникать из сингулярности. По чисто техническим причинам теорема Пенроуза требовала, чтобы Вселенная была бесконечна в пространстве. Я мог использовать это для доказательства того, что сингулярности возникают лишь в одном случае: если высокая скорость расширения исключает обратное сжатие Вселенной, потому что только фридмановская модель бесконечна в пространстве.

Несколько следующих лет я разрабатывал новые математические приемы, которые позволили бы исключить это и другие технические условия из теорем, доказывающих, что сингулярности должны существовать. Результатом стала опубликованная в 1970 г. Пенроузом и мной совместная статья, утверждавшая, что сингулярность Большого Взрыва должна была существовать при условии, что общая теория относительности справедлива и количество вещества во Вселенной соответствует тому, которое мы наблюдаем.

Последовала масса возражений, частично от советских ученых, которые придерживались «партийной линии», провозглашенной Лифшицем и Халатниковым, а частично от тех, кто питал отвращение к самой идее сингулярности, оскорбляющей красоту теории Эйнштейна. Впрочем, с математической теоремой трудно поспорить. Поэтому ныне широко признано, что Вселенная должна была иметь начало.

Отрывок из книги Стивена Хокинга «Теория всего. Происхождение и судьба Вселенной»

Расширяется ли Вселенная быстрее скорости света — Naked Science

Самый фундаментальный закон Специальной теории относительности в свое время привел Эйнштейна к осознанию самой прорывной идеи в физике — о том, что ничто не может двигаться быстрее света. Безмассовые частицы в вакууме движутся со скоростью света, тогда как все остальное — частица с массой где-либо или безмассовая частица в среде — будут всегда двигаться медленнее скорости света. Но когда разговор заходит о расширении Вселенной, часто возникают мысли о том, что это происходит быстрее скорости света. Попробуем разобраться, так ли это.

 

Вселенная, какой мы ее видим сегодня, существует уже примерно 13,8 миллиарда лет — со времен горячего Большого взрыва. Но если вы спросите, как далеко мы можем смотреть в какую-либо сторону, то ответ будет не 13,8 миллиарда световых лет, а гораздо больше. Если задуматься, то можно представить расстояние вдвое большее: если объект, излучающий свет, находился от «нас» в 13,8 миллиарда световых лет 13,8 миллиарда лет назад, то он, скорее всего, излучал свет, отдаляясь от нас — возможно, даже со скоростью, близкой к световой. Если яркий объект существовал так давно и постоянно двигался от нас со скоростью 299 792 километра в секунду, его свет достиг бы нас только сейчас, хотя сам объект уже был бы в 27,6 миллиарда лет от нас. Все это звучит разумно, но может привести нас к не очень хорошему предположению о том, что само пространство статично.

 

Пространство, в котором мы живем, не статично — оно расширяется. Более того, мы можем измерить сегодняшнюю скорость расширения, какой она была в далеком прошлом и какой она была во все «промежуточные» эпохи. Оказывается, свет объекта, находившегося от нас всего в 168 метрах в момент Большого взрыва (ладно, 10-33 секунд после Большого взрыва), достиг бы нас только сегодня, спустя 13,8 миллиарда лет, после невероятного путешествия и нереальной степени растягивания, а сам объект находился бы сейчас в 46,1 миллиарда световых лет от нас.

 

Эволюция Вселенной от момента Большого взрыва, согласно стандартной космологической модели / © NASA / GSFC

 

«Ага! — воскликните вы. — Значит, пространство расширилось быстрее скорости света!»

 

Так ли? Просто для того, чтобы что-то двигалось быстрее света, ему должна быть свойственна скорость: что-то, что можно измерить, например километры в секунду. Но Вселенная расширяется совсем не так.

 

Напротив, она расширяется со скоростью на единицу расстояния. Обычно это измеряется как километры в секунду на мегапарсек, где мегапарсек — около 3,26 миллиона световых лет. Если скорость расширения составляет 70 км/с/Мпк, это означает, что в среднем объект, расположенный в 10 Мпк от нас, отдаляется со скоростью 700 км/с с нашей точки зрения, в 200 Мпк — 14 000 км/с, а в случае с объектом в 5 000 Мпк нам будет казаться, что он отдаляется со скоростью 350 тысяч км/с.

 

Однако следует ли из этого, что какие-то объекты движутся быстрее света? Давайте вернемся к Специальной теории относительности Эйнштейна и подумаем, что мы имеем в виду, когда говорим, что ничто не может двигаться быстрее света. Это означает, что если у вас есть два объекта в одном пространственно-временном событии — занимающие одно и то же пространство в одно и то же время, — то они не могут двигаться относительно друг друга быстрее скорости света. Даже если один из них движется на север на 99% скорости света, а другой движется с такой же скоростью на юг, их скорость не будет составлять 198% скорости света относительно друг друга, а будет равняться 99,995% скорости света. Не важно, как быстро каждый из них движется, — они никогда не превысят скорость света относительно друг друга.

 

Наблюдаемая Вселенная может достигать 46 миллиардов световых лет во всех направлениях с нашей точки зрения, но за ее пределами определенно есть области, которые мы не можем наблюдать. 46 миллиардов световых лет – это всего лишь предел, доступный для нашего наблюдения / © Frédéric MICHEL/Andrew Z. Colvin

 

Именно поэтому это и называется относительностью: она измеряет относительное движение между двумя объектами в одной точке в пространстве и времени. Но этот тип относительности — Специальная теория относительности — устанавливает правила в вашей области нерасширяющегося пространства. Общая теория относительности добавляет к этому еще один уровень: факт расширения самого пространства. Измерив количество обычного вещества, темного вещества, темной энергии, нейтрино, излучения и других вещей в сегодняшней Вселенной, а также то, как свет, достигающий нас с разных расстояний во Вселенной, смещается в красный спектр в результате расширения, мы можем воссоздать, насколько большой была Вселенная в любой момент прошлого.

 

Когда Вселенной было около 10 тысяч лет, ее наблюдаемая часть уже была размером в 10 миллионов световых лет. Когда ей был всего год, наблюдаемая Вселенная была размером 100 тысяч световых лет. Когда ей была всего одна секунда, она уже была размером 10 световых лет. Да, все это и правда звучит так, будто она расширяется быстрее света. Но ни в один момент времени ни одна частица не двигалась быстрее света по отношению к другой частицей, с которой взаимодействовала.

 

Чем дальше галактика, тем быстрее она от нас отдаляется и тем сильнее ее свет смещается в красный спектр, вынуждая нас смотреть на все боле длинные волны. За пределами определенного расстояния, галактики становятся недостижимыми даже на скорости света / © Larry McNish/RASC Calgary Center

 

Напротив, расширялось само пространство между частицами, в процессе чего расстояние между ними увеличивалось, а длина волны излучения в этом пространстве растягивалась. Это продолжалось много миллиардов лет в течение космической истории и продолжается сегодня. Несмотря на то что мы никогда не сможем достичь никаких объектов, находящихся дальше 15,6 миллиарда лет на данный момент, даже если будем двигаться со скоростью света (что по определению невозможно), то не из-за того, что они отдаляются быстрее света, а потому, что пространство между разными точками продолжает расширяться.

 

Главный вывод заключается в том, что пространство не расширяется с какой-то конкретной скоростью, а скорее с определенной степенью: со скоростью на единицу расстояния. В итоге чем дальше объект, на который вы смотрите, тем больше расширение влияет на расстояние между вами. Чем дальше от вас объект, тем краснее он будет выглядеть и тем быстрее будет отдаляться с вашей точки зрения. Но быстрее ли света? Для того чтобы измерить это, вам надо находиться в той же области. Относительно вашего местоположения ничто не движется быстрее света, и это можно сказать о любом месте во Вселенной в любое время. Пространство расширяется, но не быстрее света, более того, у этого расширения нет скорости.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.

Скопировать ссылку

Расширение Вселенной — величайшее заблуждение в истории науки / Habr


Космологическое (метагалактическое) красное смещение — наблюдаемое для всех далёких источников (галактики, квазары) понижение частот излучения, объясняемое как динамическое удаление этих источников друг от друга и, в частности, от нашей Галактики, то есть как не стационарность (расширение) Метагалактики.

Графически оно выглядит так — Рис.1.

Рис.1 Графическое представление о космологическом красном смещении.

Красное смещение для галактик было обнаружено американским астрономом Весто Слайфером в 1912—1914 годах, а в 1929 году Эдвин Хаббл открыл, что красное смещение для далёких галактик больше, чем для близких, и возрастает приблизительно пропорционально расстоянию ( закон Хаббла).

Предлагались различные объяснения наблюдаемого смещения спектральных линий, например, гипотеза утомлённого света, но, в конечном итоге, связали с эффектом расширения межгалактического пространства по ОТО. Данное объяснение этого явления является общепринятым.

Красное смещение, вызванное расширением, часто путают с более знакомым красным смещением, вызванным эффектом Доплера, который обычно делает звуковые волны более длинными, если источник звука удаляется. То же верно и для световых волн, которые становятся более длинными, если источник света отдаляется в пространстве.

Доплеровское красное смещение и космологическое красное смещение – вещи абсолютно разные и описываются различными формулами. Первая вытекает из частной теории относительности, которая не принимает во внимание расширение пространства, а вторая следует из общей теории относительности. Эти две формулы почти одинаковы для близлежащих галактик, но различаются для отдаленных.

Сложность познания окружающего мира заключается в том, что выводы по многим наблюдательным и экспериментальным данным могут быть неверными и тогда искажается картина окружающей действительности. И хотя в науке принято выносить ту или иную теорию на широкое обсуждение, ошибки неизбежны. Всё зависит от того сколько последователей поддержали теорию. Зависимость Космологического красного смещения связали с расширяющимся пространством. Это общепризнанная теория.

Однако возможно другое объяснение Космологического красного смещения. Данная работа актуальна тем, что позволяет по-другому взглянуть на данное явление, ранее не озвученное ни одним исследователем. Это, по моему мнению, шаг в новую физику.

Цель статьи показать зависимость Космологического красного смещения от температуры среды распространения видимого излучения. Для решения данной задачи будем использовать экспериментальные и исследовательские данные современной науки. Эксперименты Планка показали, что частота излучения абсолютно черного тела с увеличением температуры возрастает. Чем выше температура, тем выше и частота излучения. Данная зависимость распространяется и на простые тела. Тем самым, чем выше температура, тем выше частота излучения (и поглощения) вещества, и водорода, в том числе.

Рассмотрим виды спектров.

1. Сплошной спектр — Рис.2.


Рис.2 Сплошной спектр видимого излучения

Спектр видимого излучения сплошной. Это говорит о том, что в данном спектре присутствуют все, без исключения, частоты видимого излучения. Характерной особенностью излучения является то, что излучение определённой частоты всегда ложится на одно и то же место в спектре. И исключений не бывает.

2. Линейчатый спектр — Рис.3.


Рис.3 Линейчатый спектр

Наличие вертикальных линий в спектре говорит о том, что в спектре отсутствуют некоторые частоты излучения и ничего более. Теперь, обратившись к Рис.1, мы можем утверждать, что в спектре позиции 1 отсутствует часть излучения, относящаяся к зелёному цвету, на позиции 2 отсутствует часть излучения, относящаяся к жёлтому цвету, на позиции 3 отсутствует часть излучения, относящаяся к синему цвету.

Спектр излучения в видимом диапазоне любой галактики непрерывный. На этот спектр накладываются фраунгоферовы линии поглощения водорода. О чём это говорит? Это говорит о том, что часть волн определённой длины были поглощены водородом. То есть, по мере приближения к наблюдателю часть волн спектра были потеряны. Само собой это не имеет никакого отношения к процессу излучения и связано с окружением галактик. Окружение галактик это водородная среда, которая и поглощает часть волн. Я подчёркиваю, это окружение тех галактик, которые непосредственно излучают волны в видимом диапазоне. Регистрируется это излучение только в том случае, если прошло в вакууме напрямую к наблюдателю, минуя любые другие галактики. Если бы это было не так, т.е. излучение проходило бы через вещество, то оно было бы полностью поглощено. На некоторых спектрах видимого излучения далёких галактик накладываются фраунгоферовы линии и на другие частоты спектра, это говорит о том, что поглощены эти длины волн средой окружения более близких галактик. Поэтому наложение фраунгоферовых линий прочно связано с водородом окружающим галактики, которые непосредственно излучают и вблизи которых проходит излучение. Но все галактики окружены водородом. Так почему же фраунгоферовы линии накладываются на разные части спектра видимого излучения? И чем дальше галактика, тем в более длинноволновую зону видимого спектра сдвигаются фраунгоферовы линии поглощения водорода. Ответ только один. Температура водородной среды, окружающей галактики, различна. Чем ниже температура среды поглощения, тем в более длинноволновую часть спектра сдвигается фраунгоферова линия поглощения водорода. Это доказывают спектральные серии излучения водорода, которые располагаются во всех диапазонах излучения.

Спектральные серии водорода.

Изученные серии:

Серия Лаймана

Открыта Т. Лайманом[en] в 1906 году. Все линии серии находятся в ультрафиолетовом диапазоне. Серия соответствует формуле Ридберга при n′ = 1 и n = 2, 3, 4, …; линия Lα = 1216 Å является резонансной линией водорода. Граница серии — 911,8 Å.
Серия Бальмера

Открыта И. Я. Бальмером в 1885 году. Первые четыре линии серии находятся в видимом диапазоне и были известны задолго до Бальмера, который предложил эмпирическую формулу для их длин волн и на её основе предсказал существование других линий этой серии в ультрафиолетовой области. Серия соответствует формуле Ридберга при n′ = 2 и n = 3, 4, 5, …; линия Hα = 6565 Å, граница серии — 3647 Å.
Серия Пашена

Предсказана Ритцем в 1908 году на основе комбинационного принципа. Открыта Ф. Пашеном в том же году. Все линии серии находятся в инфракрасном диапазоне. Серия соответствует формуле Ридберга при n′ = 3 и n = 4, 5, 6, …; линия Pα = 18 756 Å, граница серии — 8206 Å.
Серия Брэккета

Открыта Ф. С. Брэккетом в 1922 году. Все линии серии находятся в ближнем инфракрасном диапазоне. Серия соответствует формуле Ридберга при n′ = 4 и n = 5, 6, 7, …; линия Bα = 40 522 Å. Граница серии — 14 588 Å.
Серия Пфунда

Открыта А. Г. Пфундом в 1924 году. Линии серии находятся в ближнем (часть в среднем) инфракрасном диапазоне. Серия соответствует формуле Ридберга при n′ = 5 и n = 6, 7, 8, …; линия Pfα = 74 598 Å. Граница серии — 22 794 Å.
Серия Хэмпфри

Открыта К. Д. Хэмпфри в 1953 году. Серия соответствует формуле Ридберга при n′ = 6 и n = 7, 8, 9, …; основная линия — 123 718 Å, граница серии — 32 823 Å.

Расположение серии зависит от температуры излучения.

Альтернативное объяснение причины Космологического красного смещения с позиции влияния среды распространения на видимое излучение далёких галактик новое слово в науке. Ранее никто из учёных не высказывал такое объяснение Причины Космологического красного смещения.

На сплошной спектр видимого излучения далёких галактик накладываются фраунгоферовы линии поглощения определённой частоты водородом-средой распространения. Эти линии смещаются в длинноволновую сторону, что говорит об изменении свойств среды распространения, а не свойств самого излучения (изменении длины волны) и связаны эти изменения, прежде всего с температурой. А это, в свою очередь говорит о том, что Вселенная в своём эволюционном развитии нагревается.

Учёные совершенно не учитывают то, что водород, в зависимости от температуры излучает волны разной длины. Соответственно, в зависимости от температуры, он поглощает волны разной длины. Поэтому космологическое красное смещение обусловлено температурой во Вселенной, чем дальше, тем температура среды распространения волн, а среда-это водород, была ниже.

Вывод. О чём говорят фраунгоферовы линии на непрерывном спектре видимого излучения далёких галактик? Непрерывный спектр видимого излучения без фраунгоферовых линий говорит о том, что в спектре есть волны всех длин (частот) присущих видимому спектру. Наличие фраунгоферовых линий говорит о том, что на спектре отсутствуют волны определённой длины (частоты). Самый распространённый элемент в космосе водород. Он окружает звёзды и далёкие галактики. Водород и поглощает кванты, несущие волны этих длин видимого спектра. С этим, скажем так, дефектом, излучение видимого спектра и доходит до наблюдателя. Отсутствующие в спектре волны не могут ни удлинить свою длину, ни укоротить. Их просто нет в наличии, тем самым удлиняться нечему. Их отсутствие обусловлено поглощением их водородом в зависимости от температуры водорода. Вы только подумайте, как может изменяться, удлиняться то, чего в спектре нет? Изначально в спектре отсутствуют волны определённой длины, и длина их измениться не может. Значит, водород может поочерёдно излучать (и поглощать) волны всех длин спектра от радио до гамма в зависимости от температуры. Вселенная не расширяется, Вселенная нагревается.

Данный вывод можно доказать экспериментом. Один из вариантов такого эксперимента постепенный нагрев железного стержня (или вольфрамового) в герметичной камере в среде водорода. Железо, да и вольфрам, начиная с определённой температуры, излучает непрерывный спектр видимого излучения. Нагревать можно током. Спектр регистрировать спектрометром.

Библиографический список:1. Бор Н. Теория атома и принципы описания природы / /Сб. Н. Бор. Из бранные научные труды. Т. 2. М.: Наука, 1971

2. Иродов, И.Е. Квантовая физика. Основные законы: Учебное пособие / И.Е. Иродов. — М.: БИНОМ. Лаборатория знаний, 2010

3. Ищенко С.В., Красильников С. С., Красильникова Н.А., Смирнов А. В. Спектр атома водорода. Изотопический сдвиг. Лабораторные работы № 5,9. /Под редакцией Красильникова С.С. Учебное пособие -М. Издательский отдел УНЦ ДО,2005

4. LEKTSII Изучение спектра атома водорода lektsii.org/12-58456.html

5. PANDIA Отчёт по лабораторной работе № 7 «Изучение спектра атома водорода» pandia.ru/text/80/548/84450.php

6. POZNAUKA Спектральные серии излучения атома водорода. poznayka.org/s68583t1.html

7. Савельев, И.В. Курс физики: Учебное пособие в 3-х тт. Т.3. Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц, / И.В. Савельев. — СПб.: Лань, 2007

8. Яворский Б.М, Селезнёв Ю.А. Справочное руководство по физике. Москва «Наука» 1989 г.

несколько популярных слов / Habr

Некоторая ирония природы состоит в том, что наиболее изобильная форма энергии во Вселенной есть и наиболее загадочная. После ошеломляющего открытия ускоренного расширения Вселенной довольно быстро возникла согласованная картина, указывающая на то, что 2/3 космоса «сделаны» из «темной энергии» — некоторого сорта гравитационно отталкивающего материала. Но достаточно ли убедительны доказательства, подтверждающие новые экзотические законы природы? Может имеются более простые астрофизические объяснения этих результатов?

 

Предыстория Нобелевской премии


История темной энергии началась в 1998 году, когда два независимых коллектива исследовали удаленные сверхновые с целью обнаружить скорость замедления расширения Вселенной.
Одна из них, Supernova Cosmology Project, приступила к работе в 1988-м, и руководил ею Сол Перлмуттер. Другая, возглавляемая Брайаном Шмидтом High-z Supernova Search Team, подключилась к исследованиям в 1994-м.

Результат поверг их в шок: Вселенная достаточно давно находится в режиме ускоренного расширения.
Как детективы, космологи всего мира собирали досье на обвиняемого, ответственного за ускорение. Его особые приметы: гравитационно отталкивающий, препятствует образованию галактик (кластеризации материи в галактики), проявляется в растяжении пространства-времени. Кличка обвиняемого – «темная энергия». Многие теоретики предполагали, что обвиняемый – космологическая константа. Она безусловно соответствовала сценарию ускоренного расширения. Но хватало ли улик, чтобы полностью идентифицировать темную энергию с космологической постоянной?

Существование гравитационно-отталкивающей темной энергии должно было иметь драматические следствия для фундаментальной физики. Наиболее консервативное предположение состояло в том, что Вселенная заполнена однородным морем квантовой энергии нулевых колебаний или конденсатом новых частиц, масса которых в раз меньше электрона. Некоторые исследователи также предполагали необходимость изменения общей теории относительности, в частности, новые дальнодействующие силы, ослабляющие действие гравитации. Но даже в самых консервативных предложениях имелись серьезные недостатки. Например, плотность энергии нулевых колебаний оказалась на 120 неправдоподобных порядка меньше теоретических предсказаний. С точки зрения этих экстремальных предположений казалось более естественным искать решение в рамках традиционных астрофизических понятий: межгалактическая пыль (рассеяние фотонов на ней и связанное с этим ослабление потока фотонов) или разница между новыми и старыми сверхновыми звездами. Эта возможность поддерживалась многими космологами, бодрствующими в ночи.

Наблюдения сверхновых и их анализ проведенный С. Перлмуттером, Б. Шмидтом и А. Риссом, дали понять, что убывание их яркости с расстоянием происходит заметно быстрее, чем этого следовало бы ожидать, по принятым в то время космологическим моделям. Совсем недавно это открытие было отмечено Нобелевской премией по физике. Такое дополнительное потускнение означает, что данному красному смещению соответствует некоторая эффективная добавка расстояния. Но это, в свою очередь, возможно только тогда, когда космологическое расширение происходит с ускорением, т.е. скорость удаления от нас источника света не убывает, а возрастает со временем. Важнейшая особенность новых экспериментов состояла и в том, что они позволили не только определить сам факт ускоренного расширения, но и сделать важное заключение о вкладе в плотность вещества во Вселенной различных составляющих.
До недавнего времени сверхновые звезды были единственным прямым доказательством ускоренного расширения и единственной убедительной опорой темной энергии. Точные измерения космического микроволнового фона, включающие WMAP (Wilkinson Microwave Anisotropy Probe) данные обеспечили независимое подтверждение реальности темной энергии. То же самое подтвердили и данные еще двух мощных проектов: крупномасштабное распределение галактик во Вселенной и Sloan Digital Sky Survey (SDSS).

Sloan Digital Sky Survey (SDSS, Слоуновский цифровой обзор неба) — проект широкомасштабного исследования изображений и спектров звёзд и галактик, использующий 2,5-метровый широкоугольный телескоп в Обсерватория Апачи-Пойнт, Нью-Мексико.

WMAP (Wilkinson Microwave Anisotropy Probe) — космический аппарат НАСА, предназначенный для изучения реликтового излучения, образовавшегося в результате Большого взрыва в момент зарождения Вселенной.

Комбинация данных WMAP, SDSS и других источников, нашли, что гравитационное отталкивание, генерируемое темной энергией, замедляет коллапс сверхплотных областей материи во Вселенной. Реальность темной энергии сразу стала существенно более приемлемой.

 

Космическое расширение


Космическое расширение было открыто Эдвином Хабблом в конце 1920-х и, может, является самой важной особенностью нашей Вселенной. Не только астрономические тела двигаются под влиянием гравитационного взаимодействия своих соседей, но и крупномасштабные структуры еще в большей степени растягиваются космическим расширением. Популярная аналогия – движение изюминок в очень большом пироге, находящемся в печи. Когда пирог подходит, расстояние между любой парой изюминок, погруженных в пирог, растет. Если мы вообразим, что одна конкретная изюминка представляет нашу галактику, то мы обнаружим, что все другие изюминки (галактики) удаляются от нас по всем направлениям. Наша Вселенная расширялась из горячего плотного космического супа, созданного в процессе Большого Взрыва, в куда более холодное и более разряженное собрание галактик и кластеров галактик, которой мы наблюдаем сегодня.

Чем дальше от Земли находится та или иная галактика, тем выше скорость ее удаления от нас и, соответственно, тем сильнее смещены к красному концу линии ее спектра.

Свет, испущенный звездами и газом в отдаленных галактиках, растягивается подобным же образом, удлиняя свою длину волны во время своего путешествия к Земле. Этот сдвиг в длине волны задается красным смещением , где — длина света на Земле и -длина волны испущенного света. Например, лайман альфа переход в атоме водорода характеризуется длиной волны нанометров (при возвращении в основное состояние). Этот переход можно обнаружить в излучении отдаленных галактик. В частности, он был использован для обнаружения рекордно большого красного смещения: ошеломляющее z=10 с линией лайман альфа при нанометров. Но красное смещение описывает только изменение в масштабах космоса при испускании и поглощении света и не дает прямой информации о расстоянии до излучателя или возрасте Вселенной, когда свет был испущен. Если мы знаем как расстояние до объекта, так и красное смещение, мы можем попытаться получить важную информацию о динамике расширения Вселенной.
Наблюдения сверхновых звезд обнаружили некоторую гравитационно-отталкивающую субстанцию, которая управляет ускорением Вселенной. Астрономы не первый раз столкнулись с проблемой недостающей материи. Светящиеся массы галактик оказались существенно меньше гравитирующих масс. Эта разница была восполнена темной материей – холодной нерелятивистской материи, в основном, вероятно, состоящей из частиц, слабо взаимодействующих с атомами и светом.
Однако наблюдения указывали, что полное количество материи во Вселенной, включая и темную материю, составляет всего 1/3 от полной энергии. Это было подтверждено исследованием миллионов галактик в рамках 2DF и SDSS проектов. Но общая теория относительности предсказывает, что имеется точная связь между расширением и энергетическим содержанием Вселенной. Мы, следовательно, знаем, что общая плотность энергии всех фотонов, атомов и темной материи должна быть дополнена до некоторого критического значения, определяемого постоянной Хаббла : . Загвоздка в том, чего нет, но это совсем другая история.
 

Краткая история темной энергии


Темная энергия, или нечто подобное ей, много раз возникала в истории космологии. Ящик Пандоры открыл Эйнштейн, который ввел космологическую постоянную в свои уравнения гравитационного поля. Космическое расширение тогда еще не было открыто и уравнения правильно «подсказывали», что Вселенная, содержащая материю, не может быть статичной без математического дополнения – космологической постоянной, которую принято обозначать . Эффект эквивалентен заполнению Вселенной морем отрицательной энергии, в котором дрейфуют звезды и туманности. Открытие расширения устранило необходимость этого ad hoc дополнения теории.
В последующие десятилетия отчаянные теоретики периодически вводили в попытке объяснить новые астрономические явления. Эти возвраты были всегда кратковременными и обычно заканчивались более правдоподобными объяснениями полученных данных. Однако с 60-х годов начала пробиваться идея того, что вакуумная (нулевая) энергия всех частиц и полей должна неизбежно генерировать слагаемое, подобное . Кроме того, есть основания полагать, что космологическая постоянная могла естественно возникнуть на ранних этапах эволюции Вселенной.
В 1980 была развита теория инфляции. В этой теории ранняя Вселенная испытала период ускоренного экспоненциального расширения. Расширение было обязано отрицательному давлению, обязанному новой частице – инфлатону. Инфлатон оказался очень успешным. Он разрешил много парадоксов в модели Большого Взрыва. К этим парадоксам относятся проблемы горизонта и плоскостности Вселенной. Предсказания теории хорошо согласовывались различными космологическими наблюдениями.
 

Темная энергия и будущее Вселенной


С открытием темной энергии сильно изменились представления о том, каким может быть отдаленное будущее нашей Вселенной. До этого открытия вопрос о будущем однозначно связывался с вопросом о кривизне трехмерного пространства. Если бы, как многие раньше считали, кривизна пространства на 2/3 определяла современный темп расширения Вселенной, а темная энергия отсутствовала, то Вселенная расширялась бы неограниченно, постепенно замедляясь. Теперь же понятно, что будущее определяется свойствами темной энергии.

Поскольку мы эти свойства знаем сейчас плохо, предсказать будущее мы пока не можем. Можно только рассмотреть разные варианты. Про то, что происходит в теориях с новой гравитацией, сказать трудно, но другие сценарии есть возможность обсудить уже сейчас. Если темная энергия постоянна во времени, как в случае энергии вакуума, то Вселенная будет всегда испытывать ускоренное расширение. Большинство галактик в конце концов удалится от нашей на громадное расстояние, и наша Галактика вместе с немногими соседями окажется островком в пустоте. Если темная энергия — квинтэссенция, то в далеком будущем ускоренное расширение может прекратиться и даже смениться сжатием. В последнем случае Вселенная вернется в состояние с горячей и плотной материей, произойдет «Большой взрыв наоборот», назад во времени.

Энергетический бюджет нашей Вселенной. Стоит обратить внимание на то, что на долю привычного вещества (планеты, звезды, весь окружающий нас мир) приходится всего 4 процента, всё остальное составляют «темные» формы энергии.

Еще более драматическая судьба ожидает Вселенную, если темная энергия — фантом, причем такой, что его плотность энергии возрастает неограниченно. Расширение Вселенной будет все более и более быстрым, оно настолько ускорится, что галактики будут вырваны из скоплений, звезды из галактик, планеты из Солнечной системы. Дело дойдет до того, что электроны оторвутся от атомов, а атомные ядра разделятся на протоны и нейтроны. Произойдет, как говорят, большой разрыв.
Такой сценарий, однако, представляется не очень вероятным. Скорее всего, плотность энергии фантома будет оставаться ограниченной. Но и тогда Вселенную может ожидать необычное будущее. Дело в том, что во многих теориях фантомное поведение — рост плотности энергии со временем — сопровождается неустойчивостями фантомного поля. В таком случае фантомное поле во Вселенной будет становиться сильно неоднородным, плотность его энергии в разных частях Вселенной будет разной, какие-то части будут быстро расширяться, а какие-то, возможно, испытают коллапс. Судьба нашей Галактики будет зависеть от того, в какую область она попадет. Все это, впрочем, относится к будущему, отдаленному даже по космологическим меркам. В ближайшие 20 миллиардов лет Вселенная будет оставаться почти такой же, как сейчас. У нас есть время для того, чтобы разобраться в свойствах темной энергии и тем самым более определенно предсказать будущее — а может быть, и повлиять на него.

 

Пару слов о себе


В настоящее время я профессионально занимаюсь космологией, наукой которая изучает наибольший из существующих объектов – всю Вселенную. В то же время я являюсь давним (и постоянным) читателем горячо любимого Хабра, который не перестает удивлять замечательными статьями по всем направлениям IT технологий. Однако, будучи представителем космологической науки, был сильно удивлен и расстроен тем, что нет подобного сайта и сообщества по космологической, достаточно современной и бурно развивающейся науке.

Мы захотели восполнить эту нишу, и создать сайт о современной космологии – ModCos. В силу ряда причин, не всё задуманное у нас вышло, но то что получилось, не кажется плохим, а возможно даже полезным.
Nota bene: Не являясь и не прибегая к помощи сторонних веб-разработчиков, сайт был написан нами с нуля, и был нашим первым блином.

Модель расширяющейся Вселенной — Теории строения Вселенной

Модель Вселенной Эйнштейна стала первой космологической моделью, базирующейся на выводах общей теории относительности. Это связано с тем, что именно тяготение определяет взаимодействие масс на больших расстояниях. Поэтому теоретическим ядром современной космологии выступает теория тяготения — общая теория относительности. Эйнштейн допускал в своей космологической модели наличие некой гипотетической отталкивающей силы, которая должна была обеспечить стационарность, неизменность Вселенной. Однако последующее развитие естествознания внесло существенные коррективы в это представление.

Пять лет спустя, в 1922 г., советский физик и математик А. Фридман на основе строгих расчетов показал, что Вселенная Эйнштейна не может быть стационарной, неизменной. При этом Фридман опирался на сформулированный им космологический принцип, который строится на двух предположениях: об изотропности и однородности Вселенной. Изотропность Вселенной понимается как отсутствие выделенных направлений, одинаковость Вселенной по всем направлениям. Однородность Вселенной понимается как одинаковость всех точек Вселенной: мы можем проводить наблюдения в любой из них и везде увидим изотропную Вселенную.

Фридман на основе космологического принципа доказал, что уравнения Эйнштейна имеют и другие, нестационарные решения, согласно которым Вселенная может либо расширяться, либо сжиматься. При этом речь шла о расширении самого пространства, т.е. об увеличении всех расстояний мира. Вселенная Фридмана напоминала раздувающийся мыльный пузырь, у которого и радиус, и площадь поверхности непрерывно увеличиваются.

Первоначально модель расширяющейся Вселенной носила гипотетический характер и не имела эмпирического подтверждения. Однако в 1929 г. американский астроном Э. Хаббл обнаружил эффект «красного смещения» спектральных линий (смещение линий к красному концу спектра). Это было истолковано как следствие эффекта Допплера — изменение частоты колебаний или длины волн из-за движения источника волн и наблюдателя по отношению друг к другу. «Красное смещение» было объяснено как следствие удаления галактик друг от друга со скоростью, возрастающей с расстоянием. Согласно последним измерениям увеличение скорости расширения составляет примерно 55 км/с на каждый миллион парсек.

В результате своих наблюдений Хаббл обосновал представление, что Вселенная — это мир галактик, что наша Галактика —

Если вселенная расширяется, то почему галактики сталкиваются?

Если вселенная расширяется, то почему галактики сталкиваются?Если вселенная расширяется, то почему галактики сталкиваются?

Ученые давно доказали, что Вселенная постепенно расширяется. При безграничности ночного неба с множеством звезд, планет и прочих объектов сложно представить, что это только малая часть Галактики. А сколько еще таких галактик в космическом пространстве! Стоит разобраться, что такое расширение Вселенной и как происходит столкновение галактик.

Что значит «расширение Вселенной»?

Это сложное явление, суть которого заключается в расширении космического пространства. Трудно представить, как ученым, живущим на Земле, таком маленьком объекте на фоне Вселенной, удалось узнать о данном расширении. Впервые об этом заговорили в 1886 году, когда стало очевидно, что космические объекты движутся.

В дальнейшем многие ученые пытались создавать различные теории относительно этого явления. Также они предпринимали попытки рассчитать расстояние к другим галактикам. Изучение данного вопроса давалось с переменным успехом. Больше полезной информации удалось выяснить благодаря работе ученого Э. Хаббла. В 1929 году он сумел сформулировать и экспериментально подтвердить закон, который описывает расширение Вселенной. С помощью телескопа 2,54 м он смог рассмотреть ближайшие галактики в значительно увеличенном масштабе. Понимание того, какие звезды туда входят, предоставило возможность измерить расстояние к ним.

Таким образом, удалось выяснить, что чем дальше какая-то галактика от нашей планеты, тем быстрее она движется в противоположную сторону. В основе данного открытия содержится космологическое красное смещение. Чем дальше объект, тем меньшую частоту излучения он имеет.

Расширение ВселеннойРасширение ВселеннойРасширение Вселенной

Чтобы понять суть расширения Вселенной было проще, можно провести несложную аналогию и сравнить ее с воздушным шаром. К примеру, на слегка надутом шарике можно нарисовать точки в разных частях его поверхности. Если взять и надуть этот же шар еще больше, он увеличится в размерах и расстояние между всеми точками вырастет. При этом свое местоположение точки не поменяют, поскольку меняется только поверхность воздушного шара, на которой они нарисованы. И если смотреть на ситуацию со стороны определенной точки, то все остальные отдаляются от нее.

Примерно так же работает и принцип расширения Вселенной. Каждая галактика – это точка, а сама Вселенная – поверхность воздушного шара. Таким образом, галактики остаются на месте, а движется только космическое пространство, в котором они содержатся. Сами же галактики постепенно отдаляются друг от друга.

Почему галактики сталкиваются?

В таком случае возникает закономерный вопрос: как могут галактики сталкиваться, если по принципам расширения Вселенной расстояние между ними постоянно увеличивается? Дело в том, что галактики существуют в пространстве не по отдельности. Вселенная представляет собой некую иерархию. Расположенные поблизости галактики превращаются в скопления, а те, в свою очередь, образуют сверхскопления галактик.

Сверхскопления галактикСверхскопления галактикСверхскопления галактик

Расширение Вселенной происходит везде одинаково, равномерно и действует оно крупномасштабно. В пределах одного скопления галактики связаны между собой гравитационным притяжением. Кроме того, они находятся сравнительно близко друг к другу – на расстоянии около пары сотен тысяч световых лет. Поэтому такие объекты могут сближаться или отдаляться, независимо от всеобщего расширения Вселенной. Из-за этого возникают столкновения галактик.

Интересный факт: Земля находится в галактике Млечный Путь. Она, в свою очередь, входит в Местную группу, где помимо небольших галактик есть крупные – Треугольник и Андромеда. Предполагается, что спустя 4 млрд. лет может произойти столкновение нашей Галактики и Андромеды. А на 1 миллиард лет ранее можно будет увидеть звезды и прочие объекты Андромеды, просто посмотрев на небо.

Когда речь идет о сверхскоплениях галактик, то между ними нет взаимосвязи – отсутствует гравитационное притяжение. Другими словами, одно скопление галактик отдаляется от другого.

Галактики образуют скопления и сверхскопления. В пределах одного скопления они находятся относительно близко друг к другу и имеют гравитационное притяжение. В сверхскоплениях галактики никак не связаны. Расширение Вселенной – это расширение космического пространства, при котором галактики остаются неподвижными, но расстояние между ними растет. Столкновение галактик происходит в пределах одного скопления, потому что они притягиваются друг к другу быстрее, чем расширяется Вселенная.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Как открывали расширение Вселенной

Алексей Левин
«Популярная механика» №6, 2012

Всего лишь сто лет назад ученые обнаружили, что наше Мироздание стремительно увеличивается в размерах.

Еще сто лет назад представления о Вселенной базировались на ньютоновской механике и евклидовой геометрии. Даже немногие ученые, такие как Лобачевский и Гаусс, допускавшие (только как гипотезу!) физическую реальность неевклидовой геометрии, считали космическое пространство вечным и неизменным. Изображение: «Популярная механика»Еще сто лет назад представления о Вселенной базировались на ньютоновской механике и евклидовой геометрии. Даже немногие ученые, такие как Лобачевский и Гаусс, допускавшие (только как гипотезу!) физическую реальность неевклидовой геометрии, считали космическое пространство вечным и неизменным. Изображение: «Популярная механика»

В 1870 году английский математик Уильям Клиффорд пришел к очень глубокой мысли, что пространство может быть искривлено, причем неодинаково в разных точках, и что со временем его кривизна может изменяться. Он даже допускал, что такие изменения как-то связаны с движением материи. Обе эти идеи спустя много лет легли в основу общей теории относительности. Сам Клиффорд до этого не дожил — он умер от туберкулеза в возрасте 34 лет за 11 дней до рождения Альберта Эйнштейна.

Красное смещение

Первые сведения о расширении Вселенной предоставила астроспектрография. В 1886 году английский астроном Уильям Хаггинс заметил, что длины волн звездного света несколько сдвинуты по сравнению с земными спектрами тех же элементов. Исходя из формулы оптической версии эффекта Допплера, выведенной в 1848 году французским физиком Арманом Физо, можно вычислить величину радиальной скорости звезды. Подобные наблюдения позволяют отследить движение космического объекта.

Четверть века спустя эту возможность по-новому использовал сотрудник обсерватории во Флагстаффе в штате Аризона Весто Слайфер, который с 1912 года изучал спектры спиральных туманностей на 24-дюймовом телескопе с хорошим спектрографом. Для получения качественного снимка одну и ту же фотопластинку экспонировали по нескольку ночей, поэтому проект двигался медленно. С сентября по декабрь 1913 года Слайфер занимался туманностью Андромеды и с помощью формулы Допплера–Физо пришел к выводу, что она ежесекундно приближается к Земле на 300 км.

В 1917 году он опубликовал данные о радиальных скоростях 25 туманностей, которые показывали значительную асимметрию их направлений. Только четыре туманности приближались к Солнцу, остальные убегали (и некоторые очень быстро).

Слайфер не стремился к славе и не пропагандировал свои результаты. Поэтому они стали известны в астрономических кругах, лишь когда на них обратил внимание знаменитый британский астрофизик Артур Эддингтон.

Из-за расширения Вселенной судить о расстоянии до далеких галактик непросто. Свет, дошедший через 13 млрд. лет от галактики A1689-zD1 в 3,35 млрд. световых лет от нас (А), «краснеет» и ослабевает по мере преодоления расширяющегося пространства, а сама галактика удаляется (B). Он будет нести информацию о дистанции в красном смещении (13 млрд. св. лет), в угловом размере (3,5 млрд. св. лет), в интенсивности (263 млрд. св. лет), тогда как реальное расстояние составляет 30 млрд. св. лет. Изображение: «Популярная механика»

В 1924 году он опубликовал монографию по теории относительности, куда включил перечень найденных Слайфером радиальных скоростей 41 туманности. Там присутствовала все та же четверка туманностей с голубым смещением, в то время как у остальных 37 спектральные линии были сдвинуты в красную сторону. Их радиальные скорости варьировали в пределах 150–1800 км/с и в среднем в 25 раз превышали известные к тому времени скорости звезд Млечного Пути. Это наводило на мысль, что туманности участвуют в иных движениях, нежели «классические» светила.

Космические острова

В начале 1920-х годов большинство астрономов полагало, что спиральные туманности расположены на периферии Млечного Пути, а за его пределами уже нет ничего, кроме пустого темного пространства. Правда, еще в XVIII веке некоторые ученые видели в туманностях гигантские звездные скопления (Иммануил Кант назвал их островными вселенными). Однако эта гипотеза не пользовалась популярностью, поскольку достоверно определить расстояния до туманностей никак не получалось.

Эту задачу решил Эдвин Хаббл, работавший на 100-дюймовом телескопе-рефлекторе калифорнийской обсерватории Маунт-Вилсон. В 1923–1924 годах он обнаружил, что туманность Андромеды состоит из множества светящихся объектов, среди которых есть переменные звезды семейства цефеид. Тогда уже было известно, что период изменения их видимого блеска связан с абсолютной светимостью, и поэтому цефеиды пригодны для калибровки космических дистанций. С их помощью Хаббл оценил расстояние до Андромеды в 285 000 парсек (по современным данным, оно составляет 800 000 парсек). Диаметр Млечного Пути тогда полагали приблизительно равным 100 000 парсек (в действительности он втрое меньше). Отсюда следовало, что Андромеду и Млечный Путь необходимо считать независимыми звездными скоплениями. Вскоре Хаббл идентифицировал еще две самостоятельные галактики, чем окончательно подтвердил гипотезу «островных вселенных».

Справедливости ради стоит отметить, что за два года до Хаббла расстояние до Андромеды вычислил эстонский астроном Эрнст Опик, чей результат — 450 000 парсек — был ближе к правильному. Однако он использовал ряд теоретических соображений, которые не были так же убедительны, как прямые наблюдения Хаббла.

К 1926 году Хаббл провел статистический анализ наблюдений четырех сотен «внегалактических туманностей» (этим термином он пользовался еще долго, избегая называть их галактиками) и предложил формулу, позволяющую связать расстояние до туманности с ее видимой яркостью. Несмотря на огромные погрешности этого метода, новые данные подтверждали, что туманности распределены в пространстве более или менее равномерно и находятся далеко за границами Млечного Пути. Теперь уже не приходилось сомневаться, что космос не замыкается на нашей Галактике и ее ближайших соседях.

Модельеры космоса

Эддингтон заинтересовался результатами Слайфера еще до окончательного выяснения природы спиральных туманностей. К этому времени уже существовала космологическая модель, в определенном смысле предсказывавшая эффект, выявленный Слайфером. Эддингтон много размышлял о ней и, естественно, не упустил случая придать наблюдениям аризонского астронома космологическое звучание.

Современная теоретическая космология началась в 1917 году двумя революционными статьями, представившими модели Вселенной, построенные на основе общей теории относительности. Одну из них написал сам Эйнштейн, другую — голландский астроном Виллем де Ситтер.

Эйнштейн в духе времени считал, что Вселенная как целое статична (он пытался сделать ее еще и бесконечной в пространстве, но не смог найти корректные граничные условия для своих уравнений). В итоге он построил модель замкнутой Вселенной, пространство которой обладает постоянной положительной кривизной (и поэтому она имеет постоянный конечный радиус). Время в этой Вселенной, напротив, течет по-ньютоновски, в одном направлении и с одинаковой скоростью. Пространство-время этой модели искривлено за счет пространственной компоненты, в то время как временная никак не деформирована. Статичность этого мира обеспечивает специальный «вкладыш» в основное уравнение, препятствующий гравитационному схлопыванию и тем самым действующий как вездесущее антигравитационное поле. Его интенсивность пропорциональна особой константе, которую Эйнштейн назвал универсальной (сейчас ее называют космологической постоянной).

Эйнштейновская модель позволила вычислить размер Вселенной, общее количество материи и даже значение космологической постоянной. Для этого нужна лишь средняя плотность космического вещества, которую, в принципе, можно определить из наблюдений. Не случайно этой моделью восхищался Эддингтон и использовал на практике Хаббл. Однако ее губит неустойчивость, которую Эйнштейн просто не заметил: при малейшем отклонении радиуса от равновесного значения эйнштейновский мир либо расширяется, либо претерпевает гравитационный коллапс. Поэтому к реальной Вселенной такая модель отношения не имеет.

Пустой мир

Де Ситтер тоже построил, как он сам считал, статичный мир постоянной положительной кривизны. В нем присутствует эйнштейновская космологическая константа, но зато полностью отсутствует материя. При введении пробных частиц сколь угодно малой массы они разбегаются и уходят в бесконечность. Кроме того, время на периферии вселенной де Ситтера течет медленней, нежели в ее центре. Из-за этого с больших расстояний световые волны приходят с красным смещением, даже если их источник неподвижен относительно наблюдателя. Поэтому в 1920-е годы Эддингтон и другие астрономы задались вопросом: не имеет ли модель де Ситтера чего-нибудь общего с реальностью, отраженной в наблюдениях Слайфера?

Эти подозрения подтвердились, хоть и в ином плане. Статичность вселенной де Ситтера оказалась мнимой, поскольку была связана с неудачным выбором координатной системы. После исправления этой ошибки пространство де Ситтера оказалось плоским, евклидовым, но нестатичным. Благодаря антигравитационной космологической константе оно расширяется, сохраняя при этом нулевую кривизну. Из-за этого расширения длины волн фотонов возрастают, что и влечет за собой предсказанный де Ситтером сдвиг спектральных линий. Стоит отметить, что именно так сегодня объясняют космологическое красное смещение далеких галактик.

От статистики к динамике

История открыто нестатичных космологических теорий начинается с двух работ советского физика Александра Фридмана, опубликованных в немецком журнале Zeitschrift fur Physik в 1922 и 1924 годах. Фридман просчитал модели вселенных с переменной во времени положительной и отрицательной кривизной, которые стали золотым фондом теоретической космологии. Однако современники эти работы почти не заметили (Эйнштейн сначала даже счел первую статью Фридмана математически ошибочной). Сам Фридман полагал, что астрономия еще не обладает арсеналом наблюдений, позволяющим решить, какая из космологических моделей более соответствует реальности, и потому ограничился чистой математикой. Возможно, он действовал бы иначе, если бы ознакомился с результатами Слайфера, однако этого не случилось.

По-другому мыслил крупнейший космолог первой половины XX века Жорж Леметр. На родине, в Бельгии, он защитил диссертацию по математике, а затем в середине 1920-х изучал астрономию — в Кембридже под руководством Эддингтона и в Гарвардcкой обсерватории у Харлоу Шепли (во время пребывания в США, где он подготовил вторую диссертацию в МIT, он познакомился со Слайфером и Хабблом). Еще в 1925 году Леметру впервые удалось показать, что статичность модели де Ситтера мнимая. По возвращении на родину в качестве профессора Лувенского университета Леметр построил первую модель расширяющейся вселенной, обладающую четким астрономическим обоснованием. Без преувеличения, эта работа стала революционным прорывом в науке о космосе.

Вселенская революция

Космологическая модель Леметра, описывающая расширение Вселенной, намного опередила свое время. Вселенная Леметра начинается с Большого взрыва, после которого расширение сначала замедляется, а затем начинает ускоряться. Изображение: «Популярная механика»

В своей модели Леметр сохранил космологическую константу с эйнштейновским численным значением. Поэтому его вселенная начинается статичным состоянием, но со временем из-за флуктуаций вступает на путь постоянного расширения с возрастающей скоростью. На этой стадии она сохраняет положительную кривизну, которая уменьшается по мере роста радиуса. Леметр включил в состав своей вселенной не только вещество, но и электромагнитное излучение. Этого не сделали ни Эйнштейн, ни де Ситтер, чьи работы были Леметру известны, ни Фридман, о котором он тогда ничего не знал.

Леметр еще в США предположил, что красные смещения далеких галактик возникают из-за расширения пространства, которое «растягивает» световые волны. Теперь же он доказал это математически. Он также продемонстрировал, что небольшие (много меньшие единицы) красные смещения пропорциональны расстояниям до источника света, причем коэффициент пропорциональности зависит только от времени и несет информацию о текущем темпе расширения Вселенной. Поскольку из формулы Допплера–Физо следовало, что радиальная скорость галактики пропорциональна красному смещению, Леметр пришел к выводу, что эта скорость также пропорциональна ее удаленности. Проанализировав скорости и дистанции 42 галактик из списка Хаббла и приняв во внимание внутригалактическую скорость Солнца, он установил значения коэффициентов пропорциональности.

Незамеченная работа

Свою работу Леметр опубликовал в 1927 году на французском языке в малочитаемом журнале «Анналы Брюссельского научного общества». Считают, что это послужило основной причиной, из-за которой она поначалу осталась практически незамеченной (даже его учителем Эддингтоном). Правда, осенью того же года Леметр смог обсудить свои выводы с Эйнштейном и узнал от него о результатах Фридмана. У создателя ОТО не было технических возражений, однако он решительно не поверил в физическую реальность леметровской модели (подобно тому, как раньше не принял фридмановские выводы).

Графики Хаббла

Между тем в конце 1920-х годов Хаббл и Хьюмасон выявили линейную корреляцию между расстояниями до 24 галактик и их радиальными скоростями, вычисленными (в основном еще Слайфером) по красным смещениям. Хаббл сделал из этого вывод о прямой пропорциональности радиальной скорости галактики расстоянию до нее. Коэффициент этой пропорциональности сейчас обозначают H0 и называют параметром Хаббла (по последним данным, он немного превышает 70 (км/с)/мегапарсек).

Статья Хаббла с графиком линейной зависимости между галактическими скоростями и дистанциями была опубликована в начале 1929 года. Годом ранее молодой американский математик Хауард Робертсон вслед за Леметром вывел эту зависимость из модели расширяющейся Вселенной, о чем Хаббл, возможно, знал. Однако в его знаменитой статье эта модель ни прямо, ни косвенно не упоминалась. Позднее Хаббл высказывал сомнения, что фигурирующие в его формуле скорости реально описывают движения галактик в космическом пространстве, однако всегда воздерживался от их конкретной интерпретации. Смысл своего открытия он видел в демонстрации пропорциональности галактических расстояний и красных смещений, остальное предоставлял теоретикам. Поэтому при всем уважении к Хабблу считать его первооткрывателем расширения Вселенной нет никаких оснований.

И все-таки она расширяется!

Тем не менее Хаббл подготовил почву для признания расширения Вселенной и модели Леметра. Уже в 1930 году ей воздали должное такие мэтры космологии, как Эддингтон и де Ситтер; немногим позже ученые заметили и по достоинству оценили работы Фридмана. В 1931 году с подачи Эддингтона Леметр перевел на английский свою статью (с небольшими купюрами) для «Ежемесячных известий Королевского астрономического общества». В этом же году Эйнштейн согласился с выводами Леметра, а годом позже совместно с де Ситтером построил модель расширяющейся Вселенной с плоским пространством и искривленным временем. Эта модель из-за своей простоты долгое время была очень популярна среди космологов.

В том же 1931 году Леметр опубликовал краткое (и без всякой математики) описание еще одной модели Вселенной, объединявшей в себе космологию и квантовую механику. В этой модели начальным моментом выступает взрыв первичного атома (Леметр также называл его квантом), породивший и пространство, и время. Поскольку тяготение тормозит расширение новорожденной Вселенной, его скорость уменьшается — не исключено, что почти до нуля. Позднее Леметр ввел в свою модель космологическую постоянную, заставившую Вселенную со временем перейти в устойчивый режим ускоряющегося расширения. Так что он предвосхитил и идею Большого взрыва, и современные космологические модели, учитывающие присутствие темной энергии. А в 1933 году он отождествил космологическую постоянную с плотностью энергии вакуума, о чем до того никто еще не додумался. Просто удивительно, насколько этот ученый, безусловно достойный титула первооткрывателя расширения Вселенной, опередил свое время!